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Since the decade counter is a very important and useful configuration, many of the “basic 4-bit counters
are intemnally connected to provide a modified count of 10—a mod-10 or decade counter. For instance,
the 54/74160 and the 54/74162 are synchronous decade counters that operate in the count-up mode. The
54/74190 and the 54/74192 are also synchronous decade counters but they can operate in either a count-up
or count-down mode.

The counters mentioned above are all TTL MSI circuits, and as such we have little control over the
interna) logic used to implement each counter. Our concern is directed at how each unit can be used in a
digital system. Thus we consider each of these counters as a logic block, and our efforts are concentrated
on inputs, outputs, and control signals. Even so, the logic block diagram is given for each counter, since a
knowledge of the internal logic gives a depth of understanding that is invaluable in practical applications.

Synchronous Up Counters

The pinout and logic diagram for a 54/74163 synchronous 4-bit counter are given in Fig. 10.25. The pinout
contains a logic block diagram for this unit. The power requirements are +¥¢¢ and GROUND on pins 16 and
8, respectively. The “clock™ is applied on pin 2, and you will notice from the diagram that the outputs change
states on positive clock transitions (PTs).

The four flip-flop outputs are Qr, Op. O, and Op, while the CARRY output on pin 15 can be used to
enable successive counter stages (e.g. in a units, tens, hundreds application).

The two ENABLE inputs (P on pin 7 and 7 on pin 10) are used to control the counter. If either ENABLE
input is low, the counter will cease to advance; both of these inputs must be high for the counter to count.

A low level on the CLEAR input will reset all flip-flop outputs low at the very next clock transition,
regardless at the levels on the ENABLE inputs. This is called a synchronous reset sincg Af occurs at a
positive clock transition. On the other hand, note that the 54/74161 has an asyjmclgxr -clear, since wolkcurs
immediately when the CLEAR input goes low, regardless of the levels on ?he}CIl,O(CK, ENABLE, or LOAD
inputs. o o

When a low level is applied to the LOAD - ifiput, the Gounter is disabled, and:the very next positive clock
transition will set the flip-flops-to-agree wiih the;: ]_evgls p;resent on the four data finputs (D, C, B, and A). For
instance, suppose that the dataringuts are- DCBA = 1101, and the LDADsinput is taken low. The very next
positive clock transition‘will-toad these data into the cgunéer and the outputs will become QpQcQp(4 = 1101.
This is a very useful funttion iwhen it is desired to have the counter begin counting from a Bredetemined
count. NS SN b S ] 7 - ‘ ; ‘ ) y

For the counter to.count upward in its normal binary ceunt sequence, itis hecessary o i:okﬂhe ENXABLE
inputs (P and T), the LOAD input, and the CLEAR input all high. Udder t}i!ese‘_md‘lgq'@, the counter
will agvange one count-for cach positive clock transition, progressing from courts 0000 yif!to cobht41H
and-thefi Tepeating the séquence. Since the flip-flops afe ¢locked synchronously, the outputs change states
simultaneously and there are nio counting Spikes or glitches associated with the counter outputs. The state
diagram given in Fig. 10.26a show themprmah count segpence,ehere g4d % corresponds to one count (or
state) and the arrows show how the counter progresses from oS VTITEE Next,

The count length can be very easily modified by making use of the synchronous CLEAR input. It is a
siinple matter. toise/a NAND giteito decode the niaximusty dount'disited, and use (e output:of thiy NAND
gate to chear 't counter synohponously tolceurit 0000, The' downter will théh “punt $om {GHO0: ap“téy Huy
mierkithumm desired count and then cleay bhck e 0000; This s the: téchmiquelia baw boussdow dehbtfuord
denihterthatHas doyidesigdd modlthus! <0517t ol Gl sl el an i i Inils aoifoVl yluriegest o ban
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SN54163, SN74163 Synchronous binary counters

SN54160, 74160 decade counters at left,

SN54161, SN74161 Synchronous binary counters are similar;
however, the CLEAR is asynchronous as shown for the
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54/74161 and 54/74163

carry

For instance, if a maximum count of 9 is desired, we connect the inputs of the NAND gate to decode
count 9 = DCBA = 1001. We then have a mod- 10 counter, since the count sequence is from 0000 up to 1601,
The NAND gate used to decode count 9 along with the modified state diagram are shown in Fig. 10.26b
and c, respectively. Notice that it was necessary 1o use two inverters to obtain Qg and Qp. The modified
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state diagram has solid boxes for states in the modified, mod-10 counter, and dashed boxes for omitted
states.

What are the NAND-gate inputs in Fig, 10.26b if this figure is to be used to construct a
mod-12 counter?

Solution  The counter must progress from 0000 up 1o 1011 (demmal Il) the NAND—gate inputs must then be QOp,
QCs QB’ and QA
A set of typical waveforms showing the clear, preset, count, and inhibit operations for a 54/74163 (and

54/74161) is given in Fig. 10.27. You should take time to study them carefully until you understand exactly
how these four operations are controlled.

SN54161, SN54163, SN74161, SN74163 Synchronous binary counters

Typical clear, preset, count, and inhibit sequences
Illustrated below is the following sequence.

1. Clear outputs to zero.

2. Preset to binary twelve.

3, Count to thirteen, fourteen, fifieen, zero, one, and two.

4. Inhibit.
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1
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The logic diagram and a typical set of waveforms for the 54/74160 and the 54/74162 are given in Fig. 10.28.
{(The pinout is identical for the previously given 54/74163.) These two counters have been modified internally
and are decade counters. Other than that, the input, output, and control lines for these two counters are
identical with the previously discussed 54/74163 and 54/74161. These counters advance one count with each
positive clock transition, progressing from 0000 to 1001 and back to 0000. The state diagram for these two
units would appear exactly as shown in Fig. 10.26c; this is the state diagtam for a mod-10 or decade counts.

SN54160, SN74160 Synchronous decade counters

SN34162, SN74162 Synchronous decade counters are similar;
however, the clear is synchronous as shown for the
SN54163, SN74163 binary counters at right
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SN54160, SN54162, SN74160, SN74162 Synchronous binary counters

Typical clear, preset, count, and inhibit sequences
Illustrated below is the following sequence.

1. Clear outputs to zero.
2. Preset to BCD seven,
3. Count to eight, nine zero, one, two, and three.

4. Inhibit.
Clear (SN54160, SN74160) LT (Asynchronous)
]
Clear (SN54162, SN74162) I_.J (Synchronous)
Load VL
A ! LTI
! ——
B ! T
Data inputs y
C N
i
D__ T

ENABLE P P - L.

ENABLE T SN :E L
<% S N Ny N
oupus 4 & T "
s N 5
Sy M B !
Carry Lo I_L !
7 18 1 31

|t }-— Count —-{-———-— Inhibit ——=

Clear Preset

(b)

(Continued)

Synchronous Up-Down Counters

The 54/74193 is a 4-bit synchronous up-down binary counter. It has a master reset input and can be reset to
any desired count with the parallel load inputs. The logic symbol for this TTL MSI is shown in Fig. 10.29a.
Pin PL is a control input for loading data into pins P4, Pg, P, and Pp. When the device is used as a counter,
these four pins are left open and P£, must be held high. Pin MR is the master reset, and it is normally held
low. (A high level on MR will reset all flip-flops.)
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QOutputs TC;y and TCp, are to be used to drive the following units, such as in a cascade arrangement. The
clock inputs are CPy; and CPp,. Placing the clock on CPy; will cause the counter to count up, and placing the
clock on CPp will cause the counter to count down. Notice that the clock should be connected to either CPy;
or CPp, but not both, and the unused input should be held high. The outputs of the counter are Qy4, Uz, Q¢
and Qp.

A state diagram is a simple drawing which shows the stable states of the counter, as well as how the
counter progresses from one count to the next. The state diagram for the 54/74193 is shown in Fig. 10.29b.
Each box represents a stable state, and the arrows indicate the count sequence for both count-up and count-
down operations. This is a 4-bit counter, and clearly there are 16 stable states, numbered 0, 1, 2, ..., 15.

4 | 11
PL P, P, P, P,
—{cpy TC, b—
54/74193
—{cp, TC, b—
MR Q4 O Oc Op

—— Count up
---- Count down

(a)

The 54/74193 has a parallei-data-entry capability which permits the counter to be preset to the number
present on the parallel-data-entry inputs (P, Pg, P, and Pp). Whenever the parallel load input (PL) is low,
the data present at these four inputs is shified into the counter; that is, the counter 1s preset to the number held
by P DP CP BP A- '

Now, here is another technique for modifying the count. Simply use a NAND gate to detect any of the
stable states, say, state 15 (1111), and use this gate output to take PZ low. The only time PL will be low is
when Op, O, Op, and @, are all high, or state 15¢(1111). At this time, the counter will be preset to the data
PpPcPpPy.

For example, suppose that Py, PPyl 4= 1001 {the number 9). When the clock is applied, the counter will
progress naturally to count 15(1111). At this time, PL will go low and the number 9 (1001) will be shifted
into the counter. The counter will then progress through states 9, 10, 11, 12, 13, and 14, and at count 15 it
will again be preset 10 9.

The count sequence is easily shown by the state diagram in Fig. 10.30 on the next page. Notice that count
15 (1111) is no longer a stable state; it is the short time during which the counter is preset. The stable states
in this example are 9, 10, 11, 12, 13, and 14. This is, then, a mod-6 counter. Notice that this technique is



@ Digital Principles and Applications

asynchronous since the preset action is not in synchronism with the clock. Therefore, you should be aware
that counting spikes or glitches may be associated with the outputs of this presetting arrangement.

Suppose that the counter just discussed is still preset to 1001 (the number 9) but the clock
is applied to count down rather than count up. What are the counting states? What is the
modulus?

Solution The counter will count down to.15; then: preset back to 9, and repeaL The remlting state dmy:am s g:ve.n
in Fig, 10.31. The modulus is clearly 10,

12. Name two popular synchronous binary countcrs

13. What is the difference between the 74161 binary counter andthe 74191 bmary counter?
14. What is the modutus of the 74160 counter? ' R LA

15. Can a 74160 counter be used to count down?

. 10.7 COUNTER DESIGN AS A SYNTHESIS PROBLEM .

Section 8.11 of Chapter 8 presents a systematic approach to- @

wards sequential logic circuit design using FSM concept, In
this section, we consider counter as a state machine and discuss @
counter design steps through an example. o

Let us try to design a modulo-6 counter, the counting states
(memory values) of which are shown in state transition dia- @
gram of Fig. 10.32. We need three memory elements or flip- @
flops for this as with » flip-flop we can get at most 2" number @

of different counting states.

Now with three flip-flop, 8 different states are possible but
in our design states 110 and 111 are not used in the counting

State sequence of a
modulo-6 counter
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sequence. To start with we shall assume the counter is always initialized with one of the valid states and not
110 or 111. We decide to use three JK flip-flops labeled 4, B and C as memory element for this design.

The next step to be taken is to form a state synthesis table as shown in Table 10.1. In this, the first column
represents current state of the counter and second column, as shown in the next state of the counter state
transition diagram. We fill up next three columns using excitation table of JK flip-flop given in Fig. 8.34 of
Chapter 8. Excitation table gives inputs need to be present when clock triggers a certain 0, —(),,+ transition
of the flip-flop. In the first row, we see both C and 8 make transition 0—0 and hence corresponding JK
inputs should be 0x from excitation table. For flip-flop A, transition is 0 — | and input should be 1x . This is
continued to fill up other five rows of input columns for three flip-flops.

State Table for Design of Modulo-6 Counter Given in Fig. 10.32

Cy By Ay Cori Bysr  Anvy Jo K¢ J3 Kp Ja Ky
0 0 0 0 0 1 0 % 0 X 1 %
0 0 1 0 1 0 0 X 1 x X 1
0 | 0 0 1 1 0 X X 0 1 X
0 1 1 1 ] 0 1 x X 1 X 1
1 0 0 1 0 1 x 0 0 x 1 X
1 0 i 0 0 1 % 1 0 X X 1

Our next objective is 1o get logic equation for each flip-flop input as a function of present state of the
counter. We use Karnaugh Map for this as shown in Fig. 10.33. Note that values corresponding to unused
states 110 and 111 appear as don’t care ‘x’. We have not shown Karnaugh Map for J, and K as it is obvious
from Table 10.1 that J, =K, = 1.

BHAR BITAII
C, 00 01 11 10 C, 00 01 11 10
ol o | o |[t]] o o x |[x | x]| x
1 s pd lll x 1 4] 1 x X
Jo=B,d, Kc=4,
B, A, B, A,
C, 00 01 11 10 C, 00 01 11 10
o 0 1 Xl X 0 x X 1 0
1| 0 0 x % P x X X X
JB:EnAn KB:An

Derivation of design equations from Karnaugh Map

The final step is to draw the circuit diagram from.these design equations, which is shown in
Fig. 10.34. The decoding output is obtained from a three input AND gate which goes high every time the
counter goes to a valid state CBA = 000 and that occurs in every 6th clock cycle.

Note that the method we have explained is a general one and can be used to design counter of any
modulo number and that can follow any given counting sequence. An irreguiar counter is the one which
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does not follow any regular binary sequence but has N number of distinct states and thus qualifies as a
modulo-N counter. In Example 10.15, we present a modulo-4 irregular counter,

One question can be raised at this point for the above circuit. What happens if the circuit for any reason
goes to one of the unused state? Does it come back to any of the valid counting state or in the worst case gets
locked as shown in Fig. 10.35a? Initializing the designed circuit with 110 or 111 unused state we find that
they get back to counting sequence as shown in Fig. 10.35b. However, a designer may not leave unused states
to chances and want them to follow certain course if the circuit accidentally enters into one of them. Example
10.14 shows how to handle unused states in a counter design problem.

A
S E/E Y . I Je o=
—d> >
1— KA 40 1 K‘B B KC Z'
CLK ] ‘

1 -

L

Circuit diagram of modulo-6 synchronous counter described in Fig. 10.32

s @
DIRD @@@
OO i

(a) (b

(a) Lock-in conditions, (b) Full state transition diagram for circuit in Fig. 10.34

Desiga a self-correcting modulo-6 countet as described in Fig. 10.32 in which all the
unused state leads to state CBA = 000.

Solution  For this we have to add two more rows as given next for twounmed sta;esm sfate Table Iﬁi o
ki ; L

Cn~ 4 B" : API -.Cn+I*_ _.Bn'hl Aﬂ+} ‘e ‘IC =
! ! 1 ¢ 0 0 . x 1
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Accordingly, Kamaugh Map giving design equations changes to as given in Fig. 10.36.

B, A, B,A, B4,

C, g0 03 11 10 C, 00 01 11 10 C 00 01 11 10

n
ol o | o {[1]] 0 of x [[x [Tx]] x ol o |[1 [ x]| x
| = | x [x]] x oo [l

Jo=B.A4, Ko=A,+B, Jg=C,A,
BnAn BRAH BHAH
C, 00 01 11 10 C, 00 01 11 10 C, 00 01 11 10
0] % X 1 0 o1 X X 1! o]l x 1 1 X
1]} 1111 X X 0 1][x 1 1 X
J,=C,+B, K,=1

Design equations for Example 10.14

Note the difference between Fig. 10.33 and 10.36. Unused states 110 and 111 ¢can no longer be considered as don’t
care. This type of design is called self-correcting as the circuit comes out on its own from an invalid state to a valid
counting state sequence. The final circuit diagram from design equations are shown in Fig. 10.37.

7B B L)—D—J Je ¢

=

Circuit diagram for Example 10.14

CLK

Design a modulo-4 irregular counter with following counting sequence using D flip-flop.

00 10 11 01

|

Sokution - Using sate xcitation table of D fiip-flop (Fig. 8.34), the staic table cay be formed as shown in Table

i feg
e
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State Table for Design of Irregular Counter

B, By An+g Dpg Dy
0 0 1 0 1 0
0 1 0 0 0 0
1 0 i 1 1 1
I 1 (1] 1 0 1

Design equations from Karnaugh Map can be derived as shown in Fig. 10.38(a), and corresponding logic
circuit is shown in Fig. 10.38(b).

A B

j |
I 1 0 0 1 Flip-flop 4 Flip-flop B

11 o] o 1| oo || ’»—o> Lk 0 ’—o> LKk Q0
D,=8 Clock
(b}
(a) Deriving design equations for Example 10.15, (b) Circuit diagram

(: m Show how a modulo-4 counter designed with two flip-flops can gencrate a repetitive
sequence of binary ward ‘1101” with minimum number of memory elements?

Solution ' Let the counting sequence of two flip-flops B and 4 be 00 —01'<> 10311 — 00 .._, i.e. a modulo-4
synchronous up counter. The corresponding outputis 1 — 1 — 0~ [ 5 1... As shown in Fig. 10.39(a) the sequence
‘101 will be generated repetitively by Y. Figure 10.39(b) gives Kamnaugh Map representation of ¥ and we get
Y= A +B'. A standard moduio-4 up counter and an 2-input OR gate connected as shown in Fig. 10.39(c) generates
the given sequence. : ' :

Note that for N-bit sequence generator we need modulo-N counter. Modulo-¥ synchronous counter
requires m number of flip-flops where m is the lowest integer for which 27> N. The design procedure remains
the same as discussed in Example 10.16. Qutput ¥ now is a function of m state variables representing m
memory ¢lements.

Compare this design with shift register based sequence generator design discussed in Chapter 9 that
requires N number of memory elements for N-bit sequence generator. Though shift register based design does
not require any combinatorial circuit to generate output logic the overall hardware cost is more and it is more
pronounced for large N.

A similar design for sequence detector circuit with minimum number of flip-flops is discussed in
Chapter11.

16. What is lock-out of a counter? : _ -
17. For 48-bit sequence generator what is the minimum number of memory elements required?
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B
4 B Y AN ]
0o o0 |1 o|[t]] o
T Y iniE
! 1 1 Y=A+B
(a) (b)
—--1011 1011
1—J 4 11y
CLK ——9> >
1— K A IK

()

Sequence generator circuit using synchronous counter, {a) State Table,
{b) Output equation, (¢} Circuit diagram

10.8 A DIGITAL CLOCK

A very interesting application of counters and decoding arises in the design of a digital clock. Suppose that
we want to construct an ordinary clock which will display hours, minutes, and seconds. The power supply
for this system is the usual 60-Hz 120-Vac commercial power. Since the 60-Hz frequency of most power
systems is very closely controlled, it is possible to use this signal as the basic clock frequency for our system.
Note that in several countries commercial power supply is 50-Hz and not 60-Hz. There one can use standard
variable frequency signal generator, set at 60-Hz, as input.

In order to obtain pulses occurring at a rate of one each second, it is necessary to divide the 60-Hz power
source by 60. If the resulting 1-Hz waveform is again divided by 60, 2 one-per-minute waveform is the result.
Dividing this signal by 60 then provides a one-per-hour waveform. This, then, is the basic idea to be used in
forming a digital clock.

A block diagram showing the functions to be performed is given in Fig. 10.40. The first divide-by-60
counter simply divides the 60-Hz power signal down to a 1-Hz square wave. The second divide-by-60
counter changes state once each second and has 60 discrete states, It can, therefore, be decoded to provide
signals to display seconds. This counter is then referred to as the seconds counter.

60 Hz

: 1 cycle/s 1 cycle/min £_ 1 cycle/h
‘UA : e . Ao e
+ 60 s 60 +60 R ¥
Seconds Minutes Hours
counter counter counter

Block diagram of digital clock
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The third divide-by-60 counter changes state once each minute and has 60 discrete states. It can thus be
decoded to provide the necessary signals to display minutes. This counter is then the minutes counter.

The last counter changes state once each 60 minutes (once each hour). Thus, if it is a divide-by-12 counter,
it will have 12 states that can be decoded to provide signals to display the correct hour. This, then, is the hours
counter.

As you know, there are a number of ways to implement a counter. What is desired here is to design the
counters in such a way as to minimize the hardware required. The first counter must divide by 60, and it need
not be decoded. Therefore, it should be constructed in the easiest manner with the minimum number of flip-
flops.

For instance, the divide-by-60 counter could be implemented by cascading counters (12 x5=60, or 10 x 6
=60, etc.). The TTL MSI 7490 decade counter can be used as a divide-by-10 counter, and the TTL MSI 7492
can be used as a divide-by-6 counter. Cascading these two will provide a divide-by-60 counter as shown in
Fig. 10.41. The amplifier at the input provides a 60-Hz square wave of the proper amplitude to drive the 7490,
The 7492 is connected as a divide-by-12 counter, but only outputs Q4, Op, and Q¢ are used. In this fashion,
the 7492 operates essentially as a divide-by-6 counter.

| — O0H: T 6 "7 1Hz
O g [ UL e ] IELES
fer MECE B/ ICZN

Divide-by-60 counter

The seconds counter in the system also divides by 60 and could be implemented in the same way. However,
the seconds counter must be decoded. We are interested in decoding this counter to represent each of the 60
s in 1 min. This can most easily be accomplished by constructing a mod-10 counter in series with a mod-6
counter for the divide-by-60 counter. The mod-10 counter can then be decoded to represent the units digit of
seconds, and the mod-6 counter can be decoded to represent the tens digits of seconds.

Since both the 7490 and the 7492 count in straight 8421 binary, a 7447 decoder-driver can be used with
each to drive two 7-segment indicators, as shown in Fig. 10.42. Notice that the 7492 is connected as a divide-
by-12 counter, but only outputs Q, Op, and Q¢ are used to drive the 7447 decoder-driver.

The minutes counter is exactly the same as the seconds counter, except that it is driven by the one-per-
minute square wave from the output of the seconds counter, and its output is a one-per-hour square wave, as
shown in Fig, 10.42,

The divide-by-12 hours counter must be decoded into 12 states to display hours. This can be accomplished
by connecting a mod-10 (54/74160) decade counter in series with a single flip-flop E as shown in Fig. 10.43.
This forms a divide-by-20 (10 x 2 = 20) counter, Feedback is then used to form a mod-12 counter,

The hours counter must count through states 00, 01, 02, ..., 11, and then back to 00. The NAND gate in
Fig. 10.43 will go low as the counter progresses from count 11 to count 12, and this will immediately clear
the 74160 to 0000 and reset the flip-flop £ to 0. The counter actually skips from count 11 to count 00 omitting
the eight counts in between. This is the mod-12 hours counter; the 74160 will provide the units of hours while
the flip-flop will provide the tens of hours. Notice that the 74160 is reset asynchronously and there might then
be glitches at the outputs of the decoding gates. However, this is one case where these glitches will have no
effect, since they are too narrow to cause a visible indication on the light emitting diodes (LEDs).
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Mod-12 hours counter

Finally, some means must be found to set the clock because the flip-flops will assume random states when
the power is turned off and then turned back on again. Setting the clock can be quite casily accomplished by
means of the SET push-buttons shown in Fig. 10.44. Depressing the SET HOURS button causes the hours

counter to advance at a one-count-per-second rate, and thus this counter can be set to the desired hour. The
minutes counter can be similarly set by depression of the SET MINUTES button.

@
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Digital clock

Depression of the SET SECONDS button removes the signal from the seconds counter, and the clock can
thus be brought into synchronization.

By means of large-scale integration (LSI), it is possible to construct a digital clock entirely on one
semiconductor chip. Such units are commercially available, and they perform essentially the function shown
in the logic diagram in Fig. 10.43 (the seven-segment indicators are, of course, separate). The National
Semiconductor 5318 is one such commercially available LSI digital clock. It is available in a 24-pin dual in-
line (DIP} package measuring 0.54 x 1.25 in.

. 10.9  COUNTER DESIGN USING HDL .

Counter design in HDL is straight forward if one uses arithmetic operator + and - that cotresponds to binary
addition and subtraction respectively. We show a modulo-8 up counter design in the example given in first
column. It is left to the compiler to decide which flip-flop is to be used. If one wants to ensure use of a
particular type of flip-flop say, JK then the code should be written in a manner shown in second column for
modulo-3 up counter shown in Fig. 10.16a. )

module UC{Clock, Reset,Q); module UCJK(A,B,Clock, Reset);
input Clock, Reset; input Clock,Reset; -
cutput  [2:0] Q; output - A,B; //modulo~3 requires 2 flip—flop
//modulo 8 requires 3 flip~flop wire JA,JB,KA,KB; '
reg [2:0] Q; assign JA=-B; . 0
always 2 (negedge Clock B
or negedge Reset) assign Kh=1'bl;
if (~Reset) 0=3"Db0; | assign JB=3; :
elsea O = Q+1; : assign’ KB=1'b’1’:-" E R :
endmodule S JKEF JKI (A, JA, KA, Clock;Reset) ; //instantiates JKFF

JKFF JK2 (B, JB, KB, Clock, Reset); //instantiates JKFF
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module JKFF(Q,J,K,Clock,Reset);
- input J,K,Clock,Reset;
output Q;
reg QF

always 2 (negedge Clock or negedge Reset)
if (~Reset) Q=1'Db0:

else Q0 <= (Je~Q) | (~K&Q);
andmodule :

Design a modulo-8 up down counter which counts in upward directien if input MODE =
0, else counts in downward direction. it should also have a paralle] load facility. When PL
=1, a 3-bit number D is asynchronously loaded to the counter. The counter counts at the
negative edge of CLOCK and its output is represented by 0.

Solution The Verilog HDL code for the problem is given below. We have used a new keyword integer to-hold a
value temporarily. This hélps us in wntmg both up and down count in one single statement that responds to clock
within always block.- :

module UDCPL{CLOCK,PL,MODE,D,Q);.  //Up Down Counter
input CLOCK, PL, MODE; ._’ ~ //with parallel load. .
input [2:0] D; _ R
’ output {2 0] Qr /./modulo 8 requ;re's"&i' 'ﬂlp—ﬂop
- reg [2 0y Q.

£ PL=1, péfallel Joading takes place
//Last else statement responds to clock

The code in the first column when executed with modulo-3 JK counter, UCJK described
in this section generates monitor output as shown in column 2 and timing diagram as
shown below. Show how the test bench verifies Verilog code UCJIK is that of a modulo-3

counter.
module testUC (Fy = . AR o i :
reg €lock, Reset,w; Sk HEE R LSS N : ©o 7 O Clock= 0, E=0 B=0
wire A, B R ' 10 Clogk= "1, A=) B=0
UCIK M3{A,B, Clock,Reset), /*instantiates .20 Clock= 0, A=l B=0.
moduio-3 JK _FF. counter*/ o ' ‘ - 30 Glock= 1, ‘A=1 B=0
initial S ' 40 Clock= 0, A=0 Bel

shegin Lo rlo i © 0 B9 Clock= 1, A=0 B=}
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Clock = 07 // initial value of clock. ... - 60 Clock= 0, A=0 B=0
_BReset = 0; //initial value OF Reset=0 . : '?6"(:_lockm 1, A=0 B=0
- #5 Reset =1; //Reset becomes 1 after 5 second 780 Clock= 0, A=1 B=0
“#IGD sﬁn:lah' 7/ Terminate simulation after 100:15 98 Clock= 1, A=1 B=0
el e 100.Clock= 0, A=0 Bel
i SRR S
heg:.n i : T Tt 1 L L
ilU Clock = ~C1Qck, //Clock toggles every 10 ns =~ =it
_ )m;ttlal
L béginv o
Smonltor($t1me, " Cloc:k*' %b Az %b B=%b\n ’.
U Clock,A,B): . '
m Fomdihze
Oirls\ Ll ‘ll(}l!s\ L EO_ESI L |30ns ‘4.\OI;ISI I\ |5'0r\lsl L J6E0ns |7J Ll i ‘slorlls\ | ig F | fll()(l)nS
testUC.A
testUC.B S T\ I

testUC. Clock / 1\ f \ / \ / _ -
testUCReset |  f

.Sakttian m%atbendmmvmmthecodesbevemmtheslmulaum"::" 3

-clock toggles givinga 16+ 10 ~20ns clock eycle time. So we have § negati edges f ek (11,0 transition)
from start at 20, 40, 60, 80 and 100ns. 1 we look at the timing diagran and monit ' flop output
‘thmwkmttmmwedgesasm=m(miﬁal}ymby Rmct‘), These show that thres

- Solution : We nwed 2 fiip-flops, say B and 4 for this purpose which has 4 states. Lét the down counter count fike
Bl = 00'—5 10, and undesired state’ 11 corrects itself to 10. The mm table of Fig. 8.35 is used for

the desagn purpose.

In MeMI,wa use SR flip-flop for design purpose. Figure 10.45a shows the state table md:mfhc:

‘second column, pecessary inputs for the two SR ﬂxp-ﬂops are given. F:gum 10. 45b slmws the use of

:Kmmm W get '&mdemgn equations. _ :
‘,'ln Mﬂhod-f? we tisé JK flip-flop for design purpose The fourth coiumn &hows aecessary inputs for
: thetwo;’ﬂﬁp-ﬁop& “Flgure 10.45c shows the use of Kamaugh Map to get the desxgn equatwna

lnm-md-:i weusei) ﬂ:p—ﬂop for design purpose. The thu'd column shows necessary mpu&s for the :
two D flip-flops. Fig. 10.45d shows the use of Kamaugh Map to get the design equations.,
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In Method-4, we use T flip-fiop for design purpose. The last column shows necessary inputs for the
two D flip-flops. Figure 10.45e shows the use of Karnaugh Map to get the design equations.

Present State  Next State
BA, B, A SpRg SyRy | Dp Dy | JpKg J K4 | Tp Ty
00 10 10 0X |1 o0o11X 0X]|1 0
01 00 0X 010 oJ]OX X101
10 01 01 10|90 1|X1 1X]1 1
11 10 X0 011 o0(X0 Xt |01
(a)
An An An AH
B" 0 1 Bn 0 1 Bn 0 Bn 0 -I-|
0| 110 0] 0| X g oo 0| x il:
T T
110} X 1l1]0 110 1] 0 |iL}
Sy=A,B, Ry=A.B, S,=A4.B, R,=A4,
(b)
4, A, A, A,
I B T R N §
o_ﬁ;} 0} 03X | X ol 0{ X 0! L
1 L L
T . T PR By . !
x| x 1|isi] o T 1]ix | 1
Jy=4,  Kg=4, | J, =8B, K;=1
©
An 'A'a An An
B” 0 Bn_ 0 1 B, _(E' 1 B” 0 rl_'
0 0 - oloto ol'1i| 0 ol X |il
— v v
110 1 t]11]0 i) o RS
DB=A;:B:1+Aan DA=A.;:.Bn TB:A; TA=An+Bn
(d) (e)

(a) State table for the self correcting modulo-3 counter and required inputs,
(b) Design with SR flip-flops, (¢} Design with JK flip-flops, (d) Design with
D ilip-flops, (e} Design with T flip-flops

A counter has a natural count of 27, where n is the number of flip-flops in the counter. Counters of any
modulus can be constructed by incorporating logic which causes certain states to be skipped over or
omitted. One technique for skipping counts is to steer the clock pulses to certain flip-flops at the proper
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hmeﬂﬂnsucalkd;Mglogm Asecond tadmiquemwpmﬁmm the‘kngu: mputstoeadaﬂxp*ﬂopin
order to omit certain states. This is called lock-ahead logic. .
Logic can be mduded such that the counter can qperate in etther a count-up or count- down mode.
Furthermore, Iogn:gaﬁes tanhe de&gnpdto umquely decode each state:of a couster.
* Higher-modulis counters can be easily constructed by using combindtions of kmer—modulus counters.
Sudxemﬁgumhmrepresmtawmgmmsebetwemspeed andharrdwazecount.
- The d:gtta! clock is an, ktteresting app}zcahm that ﬂlusﬁates some of the methods employmg counters

* decoding gate A logic gate whose output is
high (or low) only during one of the unique
states of a counter,

 glitch An undesired positive or negative pulse
appearing at the output of a logic gate.

* lock out of a counter Counter getting locked
into unused states.

= modulus Defines the number of states through
which a counter can progress.

* natural count The maximum number of states
through which a counter can progress. Given
by 27, where » is the number of flip-flops in
the counter.

parallel counter A synchronous counter
in which all flip-flops change states
simultaneously since all clock inputs are
driven by the same clock.

preseftable counter A counter incorporating
logic such that it can be preset to any desired
state.

ripple counter An asynchronous counter in
which each flip-flop is triggered by the output
of the previous flip-flop.

sequence generator Generates a binary data
sequence.

up-down counter Abasic counter, synchronous
or asynchronous, that is capable of counting
in either an upward or a downward direction.

a7 b. 10
c. 8

10.1 Draw the logic diagram, truth table, and  10.5 See if you can draw the wamfoml‘ma 10-
waveforms for a two-flip-fiop ripple counter flip-flop rippde- emmfe; What difficulties do
similar to that in Fig. 10.1. youi eneoundgr? ;i <

10.2 Draw the logic diagram, truth table, and 0.6 What is the largest decimal number that can
waveforms for a three-flip-flop ripple counter be stored in each counter in Prob. 10.47?
that uses JK flip-flops sensitive to a clock PT. 10.7 Draw the wavefonﬁ_ at QB, Oc, and QD é‘or_

10.3 What is the clock frequency if the period of B a 7493A, assuming, that a 1-MHz clock s
in Fig. 10.1 is 1000 ns? .. . appliedatinputB.

104 Detenmne 'th‘e ‘niimber Ofp()SSlbIe StateS ll’l A 193 D[@W the loglp dlagr_ m, p—Pﬁ] table and

ﬁlp—ﬂops

'fcountet con}posed of the fol]owmg number of ) o

BEFLE TR

. wprveforu}g for.a two-ﬂ,lp -flop, tipple; coynter

operating in ‘the count-down mode.
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10.9 Draw the gates necessary to decode the 16
states of a 7493 A operating as in Fig. 10.3.

10.10 Assume that the clock for the ripple counter
in Fig. 10.1 is a 1-MHz square wave and each
flip-flop has a delay time of 0.25 us. Carefully
draw the waveforms for the clock and each
flip-flop and the output decoded signals. Do
you sce any sources of difficulty?

10.11 Use the waveforms in Fig. 10.9 and study the
remaining seven decoding gates in Fig. 10.7.
Show whether glitches will appear by drawing
the decoded waveform for each gate.

10.12 Draw the logic diagram, truth table, and
waveforms for the synchronous counter in
Fig. 10.13 in the count-up mode.

10.13 Repeat Prob. 10.12, but in the count-down
mode.

10.14 Write a Boolean expression for the AND gate
connected to the upper teg of the OR gate
that drives the clock input to flip-flop @p in a
74193,

10.15 Draw a complete set of waveforms for the
74191 in Fig. 10.15 operating in the count-up
mode.

10.16 Repeat Prob. 10.15, but operating in the count-
down mode.

10.17 Determine the number of flip-flops that would
be required to build the following counters:

a. Mod-6 b. Mod-11
c. Mod-15 d. Mod-19
e. Mod-31

10.18 Draw decoding gates and all waveforms for
the mod-3 counter in Fig. 10.16.

10.19 Draw decoding gates and all waveforms for
the mod-6 counter in Fig, 10.17.

10.20 Draw decoding gates and all waveforms for
the counter in Fig. 10.18.

@

10.21 Draw the logic diagram, truth table, and
waveforms for a mod-9 counter using two
mod-3 counters connected in sertes.

10.22 Draw decoding gates and all waveforms for
the decade counter in Fig, 10.21.

10.23 Draw decoding gates and all waveforms for
the counter in Fig. 10.22.

10.24 Draw waveforms for Qp, Qg and Op,
assuming that the clock is applied to input B
of a 7490A.

10.25 Show how an AND gate might be used in Fig.
10.24 to count an unknown number of pulses
that occur during a known time interval. This
is the basic idea used in a frequency counter.

10.26 Draw the logic block for a 74163 and show
how to construct a mod-13 counter. Use the
same technique as in Fig. 10.26. Draw the
state diagram.

10.27 Repeat Prob. 10.26 for a mod-11 counter and
then a mod-7 counter.

10.28 Draw the waveforms expected in Prob. 10.26.

10.29 Draw the logic block for a 74162 and show
how to construct a mod-7 counter. Use the
same technique as in Fig. 10.26. Draw the
state diagram.

10.30 Use a 74193 presettable counter to implement
a mod-8 counter. List the omitted states.and
normal count sequence; draw a complete
logic diagram. Draw the set of waveforms you
would expect, showing the clock and the four
outputs. Remember that the output transitions
occur on positive clock transitions.

Design a modulo-3 counter using D flip-flop
that counts as 01 - 10— 11. The unused state
00 goes to 01 at next clock trigger.

Design a modulo-5 counter using D flip-flop
the unused states of which go to one of the
valid counting state at next clock trigger.

10.32
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10.33 Design a circuit using JK flip-flop that behaves
both as a modulo-5 and modulo-3 counter
depending on how it [ initialized.

10.34 Design a modulo-8 counter (a) using SR flip-
flop and (b) using T flip-flop.

10.35 Design a sequence generator with minimum
number of flip-flops that generates sequence
‘110001’ repetitively.

10.36 Design a sequence generator with minimum
number of flip-flops that generates sequence
*10110001° repetitively.

. LABORATORY EXPERIMENT '

AIM: The aim of this experiment is to study
counters and design a modulo-N counter.

Theory: A counter counts events happening
in certain form at its input. It consists of a bank
of flip-flops and also may have a2 combinatorial
logic circuit. In ripple ¢ounter, output of

one flip-flop triggers another flip-flop. In -
synchronous counter, all the.flip-fiops -are-
iriggered simultaneously by a common clock.

A modulo-N counter generates an output at
every n pulse occurring at its input which is
usually a clock signal. With m number of flip-
fiops, a maximum of 2" modulo number can be
achieved. The CLEAR input clears a counter
which can be used to have lower modulo
numbers from originally designed higher
modulo number counters. The LOAD- input,
if available, allows parallel loading of a set of
data from where counting sequence can begin.
This can also be used to get a lower modulo
number or some specific counting states.

Apparatus: S5V DC Power supply, Multime-

Input ANC @4 Op GND Oz O¢

ﬁilﬁill?lﬁl'ﬂﬁﬂriﬂfﬂ

0, Op Og
o> 4 Oc
g T490A -
—> B 9(2) —
RO{[) RU(Z) Rg(l}

lill_!’-_ll_gll_“_lbjl_lé][ll

Input B Ry (y Roay NC Vo Roqry Rypz)

ter, Bread Board, Clock Generator, and Oscil-
loscope oo

Waork element; IC 7490 has two separate
counters, a modulo-2 and a synchronous
modulo-5 counter which can. work
independently with two different clocks being
connected to input A and input 8. They can
be combined to work as modulo-10 (coming
from 5 x 2)-counter-if output of one is used
as clock input of other: The pair Ry performs
NAND operation and then clears (active low)
the modulo-2 counter. The pair Ry functions
similarly but for modulo-5 counter. Verify
" 7490 truth table for individual counters and
the combination. Use R inputs to get modulo
numbers different from 2, § and 10. IC 74163
is modhilo-16 counter with synchronous clear
and data input load facility. Verify the truth
table of 74163. Understand the function of
carry output. Show in how many different
ways 74163 can be connected to get a decade
(modulo-10) counter. Use two 74163 to obtain
a modulo 50 and then a modulo 100 counter.

Carty Outputs Enable
Vec ouput @4 €8 @c @p 7 Lead
i Bt 0 ol
Cary 0, (O O QDEn%b!eJ

Clear  54/74163 Load
Enable
rcx B
I
[f

i
I -
1} 2] 3] [af [s] lef [2J L8]
lear Clock A B C D Enable GND
P
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Ten o _ ¥
State3=CBA "~ . . =i . ..
The primary cause of such glitches is flip-
flop propagation time; one way to eliminate
them is to use the ¢lock as a “strobe.”

In a parallel counter, all fiip-flops change ..

state in synchronism with the clock.

The glitches are eliminated because all
gate inputs are synchronized—that is, they =
are all delayed from the clock by the same -

amount.
PTs
Four

8.7,6,5,4,3, or 2. However, mod-4 and =

mod-3 require only two flip-flops, and
mod-2 is a single flip-flop. -

10.

1.

12.
13,
14.
15.

16.

17

A decade counter has 10 states—a mod-10
counter. ) _

The decade counfer- in Fig. 10.21 has
symmetrical output at D, but does not count
in straight binary. The decade counter in
Fig. 10.22 does not have  symmetrical
output at D and does count in straight
binary,

74161, 74163, 74191, 74193

The 74191 can count up or down.

The 74160 is 2 mod-10 counter.

The 74160 can only count up. (The 74190
can count down.)

Lock-cut of a counter occurs when the

" countter remains locked into unused states

and does not function properly.

Six.
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Design of Synchronous and
Asynchronous Sequential Circuits

State machine design using Moore model and Mealy model

State transition diagram and preparation of state synthesis table

Derivation of design equation from state synthesis table using Karnaugh map
Circuit implementation: flip-flop based approach and ROM based approach
Use of Algorithm State Machine chart

State reduction techniques

Analysis of asynchronous sequential circuit

Problems specific to asynchronous sequential circuit

Design issues related to asynchronous sequential circuit

XX

Design probiem normally starts with a word description of input output relation and ends with a circuit
diagram having sequential and combinatorial logic elements. The word description is first converted to
a state transition diagram or Algorithmic State Machine (ASM) chart followed by preparation of state
synthesis table. For flip-flop based implementation, excitation tables are used to generate design equations
through Karnaugh Map. The final circuit diagram is developed from these design equations. In Read Only
Memory (ROM) based implementation, excitation tables are not required however, flip-flops are used as
delay elements. In this chapter, we show how these techniques can be used in sequential circuit design.

There are two different approaches of state machine design called Moore model and Mealy model. In
Moore model circuit outputs, also called primary outputs are generated solely from secondary outputs or
memory values. In Mealy model circuit inputs, aiso known as primary inputs combine with memory elements
to generate circuit output. Both the methods are discussed in detail in this chapter.

In general, sequential logic circuit design refers to synchronous clock-triggered circuit because of its
design and implementation advantages. But there is increasing attention to asynchronous sequential logic
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circuit, as its response is not limited by the clock frequency. But there are too many operational constraints
that makes design of asynchronous circuit very complex. Except for time-critical applications synchronous
circuit always remains a preferred choice for sequential logic design.

We divide this chapter in two parts. Part A presents a systematic approach towards synchronous system
design while Part B is devoted to asynchronous circuit.

PART A : DESIGN OF SYNCHRONOUS SEQUENTIAL CIRCUIT

11.1. MODEL SELECTION

There are two distinct models by which a synchronous sequential logic circuit can be designed. In Moore
model (Fig. 11.1a) the output depends only on present state and not on input. In Mealy model (Fig. 11.1b),
the output is derived from present state as well

as input. The option to include input in output ngﬁrsy‘:> Combination

generation logic gives certain advantage to ) logic Next-state
Mealy model. Usually it requires less number inpuls

of states and thereby less hardware to solve any State Memory .

problem. Also, the output is generated one clock outputs

cycle earlier. However, there is one important — )
disadvantage associated with such circuit. The . Co“;b"?atw“ ——> Primary
input transients, glitches etc. (if any) are directly oe% outputs

conveyed to the output. Also if we want output (a)

transitions to be synchronized while mput can Primary Primary
change any time Mealy model is not preferred. inputs ——— > Combination |—— > outputs
In Moore model, the output remains stable over State logic Next-state
entire clock period and changes only when there outputs g inputs
occurs a state change at clock trigger based on Memory

input available at that time.

In Section 11.2, we shall discuss how
conversion from one model to other can be
done through state diagram representation.
Depending on application requirements we
choose one of these two models or a mixed model where a part of the circuit follows Mealy model and the
other Moore medel.

We address all design related issues of synchronous sequential logic by solving a binary sequence detector
problem in a step-by-step manner. We use both Moore model and Mealy model for this problem and note the
pros and cons of each approach. Note that, any other design problem can be attempted in the same way. The
solution presented in subsequent sections is particular to this problem but the approach is general in nature.
The sequence detector problem is stated next,

(b)

(a) Moore model, (b) Mealy
model of sequential logic system

The Problem Design a sequence detector that receives binary data stream at its input, X and signals when
a combination ‘011" arrives at the input by making its output, ¥ high which otherwise remains low, Consider,
data is coming from left, i.e. the first bit to be identified is 1, second 1 and third 0 from the input sequence.
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. 11.2 STATE TRANSITION DIAGRAM '

The first step in a sequential logic synthesis problem is to convert this word description to State transition
diagram or Algorithm State Machine (ASM) Chart. ASM chart is discussed in Section 11.6. In this section,
let us see how we arrive at state transition diagram following Moore and Mealy model. We use the problem
presented in Section 11.1 for demonstration.

State Definitions: Moore Model

Since, the output is generated only from the state variables let us see how many of them are necessary. Let
the detector circuit be at state @ when initialized. State o can also be considered as one where none of the bit
in input sequence is properly detected or the starting point of detection. Then if 1st bit is detected properly
the circuit should be at a different state say, b. Similarly, we need two more states say, ¢ and & to represent
detection of 2nd and 3rd bit in proper order. When the detector circuit is at state d, output Y is asserted and
kept high as long as circuit remains in state d signaling sequence detection. For other states detector output,
Y=0.

State Transition Diagram: Moore Model

In Moore model each state and output is defined within a circle in state transition diagram in the format
s/Y where s represents a symbol or memory values identified with a state and ¥ represents the output of the
circuit. An arrow sign marks state transition following an 1

input value 0 or 1 that is written along the path. Note that 0 '

X represents the binary data input from which sequence @.@

‘011’ is to be detected. . 1

Figure 11.2a shows the state transition diagram
following Moore model. We arrive at it by following @ @
logic. The circuit is initialized with state a. If input 0 1
data X = 1, the first bit of the sequence to be detected
is considered detected and the circuit goes to state b, If |9 FI1B- ) State transition diagram
X = 0 then it remains at state @ to check next bit that of sequence detector:
arrives, If at state b, the circuit receives X = 1, then first Moore model
two bit of the pattern is considered detected and it moves to state ¢. But at state b, if it receives X = 0 (i.e
input sequence is “017) then detection has to start afresh as we need all three bits of © 0117 to match. Thus, the
detector goes back to initial state a. At state ¢, if the circuit receives X = 0 then input bit stream is ‘011" and
the circuit goes to state d and signals detection of pattern at state d. However, at ¢ if X = 1, the detector is in
a situation where it has received ‘1117 in order. It stays at ¢ so that if next arriving bit, X = 0 it should signal
sequence detection. At state 4 if the circuit continues sequence detection job, receiving X = 1 it goes to state
b. That ensures detection of ‘011’ second time in input ‘011011, For X = 0 the circuit goes to initial state a
signifying not a single bit has been detected properly subsequent to previous detection,

State Definitions: Mealy Model

Since, the output can be derived using state as well as input we need three different states for 3-bit sequence
detector circuit following Mealy model. The three states say, a, b, ¢ represents none, 1% bit and 2™ bit
detection. When the circuit is at state ¢ if the input is as per the pattern the output is generated in state ¢ itself
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with proper logic combination of input. Note the difference with Moore model where output is generated one
clock cycle later in state d and also requires one additional state.

State Transition Diagram: Mealy Model

Here, the output is written by the side of input along arrow path in the format X7Y, where X and Y represent
input and output respectively. Figure 11.2b shows state transition diagram of the given problem following
Mealy model. The explanation is as follows.

The circuit is initialized with state a. If it receives input
X =0, it stays at a else goes to state b that signifies first bit
is detected properly. In both the cases output, ¥ = 0 signify-
ing no detection. At state b, if X' = 0, the circuit returns to
initial state a, i.e. no bit in given order is detected and if X =
1, goes to state ¢, signifying two bits in order are detected.
In both the cases ¥ = 0. Now when at ¢, if input received is
0 then all the three bits of the pattern are received properly 1/0
and sequence detec‘tit.n'] can be signaled through Y= 1. Also (@3 Fig. 11.35) State transition diagram
the c1rcu!t goes to mmal- state a and prepares for a new set it of sequence detector:
9f detection. At_ state ¢, l.f X =1 then the sequence received Mealy model
is ‘111°, An arrival of 0 in next clock can make the detec-
tion *110” possible. So, at state ¢ if X'= 1 it is considered as two bits, ‘11" have been detected properly and the
circuit remains at state ¢. The ouput at that time is ¥ = 0 since sequence is not fully detected.

Conversion of Models

Conversion between Mealy and Moore models can take place as shown in Fig. 11.3 where, T, T, T, represent
paths leading to state a. The path 7', leads from state  when input is 1. If input is 0, state @ leads to state b and
there are no other paths reaching 5. The rule of conversion is as follows. If all the transitions in a Mealy model
to a particular state are associated with only one type of output then in comresponding Moore model that
output becomes state output (Fig. 11.3a). If there is more than one output in Mealy model we need as many
intermediate state variables, as shown in Fig. 11.3b. In Fig. 11.3c it is shown how to treat transitions that loop
within a particular state. The reverse of this is applied in converting Mocre model to Mealy model.

As an example, let us look at equivalence between two models of the sequence detector problem shown
in Fig. 11.2a and Fig. 11.2b. In Mealy model we have paths leading to state a, have two different types of
outputs. So state a of Mealy model get divided in two as @ and 4 in Moore model. Since there is a loop in
state a itself for one input, conversion rule shown in Fig. 11.3c is applicable. For other states there is no such
conflict and a direct conversicon is possible following Fig. 11.3a.

Now that we know one maodel can be obtained from other, i.e. logical equivalence exists between the two,
we let application constraints (as discussed in Section 11.1) decide which one is to be chosen for a particular
problem. :

1. What is a state transition diagram?
2. How does state transition diagram of a Moore Machine differ from Mealy machine?
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(b)

Conversion between Mealy and Moore model

11.3  STATE SYNTHESIS TABLE

The next step in design process is to develop state synthesis table, also called circuit excitation table or
simply state table from state transition diagram. Note that for m number of memory elements we can have
up to 27 number of different states in a circuit. Once we decide how many memory elements are to be used,
we go for state assignment.

Often, we need to exercise state reduction technique before state assignment to remove redundancy in
state description. Redundancy may come while converting word desctiption of a complex probiem to state
transition diagram. We shall discuss state reduction techniques in Section 11.7.

State Assignment

Here, we allocate each state a binary combination of memory values, For the given problem, both Moore and
Mealy models require minimum two flip-flops (say 4 and B) to define their states (4 for Moore and 3 for
Mealy). Let the state assignment be as follows.

aB=0, 4=0 b:B=0, A=1 c¢B=1, A=0 dB=1 A=1
Note that Mealy model does not use state d. Assignment can be done in any order, e.g. we can make a: B

=0,4=1and b: B=0, 4 =0 and proceed with the design. However, one set of state assignment may give
simpler final logic circuit over other. Though there is no definite state assignment rule that gives minimum
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hardware for an implementation, logical adjacency between transition states often helps. In Problem 11.7
to 11.10, we shall see how a different state assignment for this sequence detector problem asks for different
hardware requirement.

State Synthesis Table

The next design step is to decide what kind of memory elements are to be used for our design. Flip-flops are
commonly used for this purpose. A ROM based implementation is discussed in Section 11.5. When we use
flip-flops we take note of the fact that there are different types of them available. Each flip-flop has a unique
characteristic equation and excitation table (Section 8.9). In synthesis problem we have to find out how flip-
flop inputs are to be connected and how final output is generated from flip-flop output. For this, we use state
synthesis table that gives the input requirement of all flip-flops for a given state transition diagram. Before
we prepare this table we should decide which flip-flop we are going to use. We normally prefer JK flip-flop as
it has maximum number of don’t care states in its excitation table and that leads to simpler design equations.
We design the given sequence detector circuit using JK flip-flops.

Moore Model

State synthesis table obtained from state transition diagram of Moore model (Fig. 11.2a) and excitation table
of JK flip-flop (Fig. 8.34) is shown in Table 11.1. It has eight rows as for each of the four possible states there
can be two different types of inputs. The table is prepared as follows. When the circuit is at state 00, i.e. a
and receives X = 0 it remains at state 00 and output in this state ¥ = 0. Since both B and 4 flip-flop makes
0—0 transition both the flip-flops should have input O from excitation table. This way first four columns of
the table (present state, input, next state, output) are filled from state transition diagram and last two columns
(B and A flip-flop inputs) from flip-flop excitation table.

State Synthesis Table for Moore Model

Present State Present Input i+ -Next State Output e
Bn An: n Bkﬂ . Anf-l n JB KB J.{ KA
0 0 0 I SR 0 0 X 0 x
LR 1 R S B 0 0 X L x
" | EERIRTP: 1] EL ¢ ERLAEN i B 0 0 % X 1
0 1. ! U F T T 0 1 x X (
1 ... 6 0 O TR X 0 P .0 1 X
1 0 1 i 0 0 x 0 0 x
1 13 0 0 0 1 X 1 X 1
L1 1 0 1 1 X 1 X 0

Mealy Model

Since, Mealy Model requires three states for this problem we have six rows in state synthesis table as in each
state there can be two different types of input X = 0 or X' = 1. Table 11.2 represents state synthesis table for
Mealy model. The method remains the same as Moore model but we use state transition diagram (Fig. 11.2b)
corresponding to Mealy model from Section 11.2.
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(@9 Table 11.2°) State Synthesis Table for Mealy Model
Present State FPresent Input Next State Present Output
Bﬂ' Au Xn BnH An ! Yn JB . KR JA KA
0 0 0 0 0 0 0 x 0 x
0 G- 1 0 1 0 @ ke 1 X
o i 0 0 0 0 L0 K X l
0 1 1 1 0 0 ke X 1
1 0 i 0 0 1 K 5 0 X
i 0 1 I 0 0 % 0. 0 X

11.4 DESIGN EQUATIONS AND CIRCUIT DIAGRAM

In this section, we discuss how to get final circuit diagram from state synthesis table (Section 11.3) through
design equation. In design equation we express flip-flop inputs as a function of present state, i.e. memory
values (here, B and 4) and present input (here, X). This ensures proper transfer of the circuit to next state. The
design equations also give output (here, ¥) equation in terms of state variables or memory elements in Moore
model and state variables together with input in Mealy model. We normally use Karnaugh map technique to
get a simplified form of these relations.

Moore Model

Figure 11.4a presents Karnaugh map developed from state synthesis Table 11.1 and also shows corresponding
design equations. Figure 11.4b shows the sequence detector circuit diagram developed from these equations.
This is done in the following manner. Equation J, = X4 requires .J input of flip-flop 4 to be fed from a two
input AND gate, inputs to which are X and 4. The other inputs and output are obtained in similar way. Note
that, output is generated by AND operation on two flip-flop outputs and does not use X,

Mealy Model

Using state synthesis table corresponding to Mealy model (Table 11.2) we can fill six positions in each
Karnaugh map (Fig. 11.5a). Locations B 4 X = 110 and B A4 X =111 are filled with don’t care(x) conditions
as such a combination never occur in the detector circuit if properly initialized. The design equations are
obtained from these Karnaugh maps from which circuit diagram is drawn as shown in Fig. 11.5b. Note that
in this circuit, output directly uses input information,

3. What is an excitation map?

4. Is there any difference in hardware requirement between Moore and Mealy machine?

5. In the sequence detector circuit desxgned here, -show the eutput in each clock cycle by
completing Tabie 11.3. :
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B, A, B, 4, B, A,
X 00 01 11 10 X 00 01 11 10 X 00 01 11 10
0| 0 0 x | x o [x x | x 1] 0| o x X 0
1o | [ x]| x 1| x | x| = Q T ]| x 0
Jp=X4, Kp=X J,=XB,
BHAH BI’IAI’I
X 00 01 11 10 X 00 01 11 10
0] [x 1 X X 0| ¢ 0 Ejl
1] |x 1 x x 1] © 0 x 0
K, = Y=X8,
(@)
X

> >
- K, 4 K, B
K [ [
(b}
(@8 Fig. 11.5 ) (a) Design equations for Mealy models, (b} Circuit diagram following Mealy

model

11.5 IMPLEMENTATION USING READ ONLY MEMORY

In this section we present an interesting solution to sequential logic problem using Read Only Memory
(ROM) which though called memory is a combinatorial circuit. The output of ROM is immediately available
when a particular location in memory is addressed. The detailed description of ROM, its architecture, type
and operation is given mn Sections 4.9 and 13.5.

For our design purpose we need to have a ROM that has as many memory locations as the number of rows
in a state synthesis table. Note that, each row is uniquely identified by present state and present input. This
present state and input combination through an address decoder points to memory spaces in ROM. In each
location of ROM we store the next state value of the circuit.
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We also need a hank of Delay flip-flops, the number is same as the number of state variables or memory
elements. Next state information for each state variable that is stored in ROM is fed to these D flip-flop
inputs, At clock trigger they appear at the output of the flip-flop. Now that the circuit has advanced by one
clock cycle these D flip-flop outputs serve as present state information and fed to ROM address decoder.
Together with present input they point to another location in memory that has next state information. ROM
being a combinatorial circuit these next state values are immediately available to D flip-flop inputs and the
cycle goes on. The final output is generated from state variables in Moore model and also uses direct input
in Mealy model.

Moore Model

For the sequence detector problem we need 8 x 2 ROM as there are 8 rows in state synthesis Tables 11.1 and
11.2. The circuit diagram is shown in Fig. 11.6. The 3 to 8 address decoder is fed by B, 4 and X. The output
of decoder is 000, 001, 010 .. in same order as they appear in state Table 11.1. For example, when BAXY = 000
next state is 00 from state table and we store 00 in ROM corresponding to decoder output 000. Similarly,
next memory values stored in ROM are 01, 00, 10, 11... in order from state table. D flip-flop connections are
explained before and output is generated following logic equation ¥ = 4B.

The circuit functions like this. The D flip-flops are initially cleared, i.e. B4 = 00. If X = 0, the first location
in ROM corresponding to BAX = 000 is selected and ROM output = 00 and at clock trigger next state remains

3 to 8 decoder Bt Apn
000 0 0
2 001 0 1
z 010 0] 0
X
b's P . 011 1] o
8 x 2 ROM
100 1 1
101 1 0
110 0 0
111 0 1
‘\Bn D Bn+l
7
<—
e
——
A, > L A,
vy
<—

— CLK

ROM based implementation of sequence detector: Moore model
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at B4 = 00. Thus 00 state remains at 00 for X =0. If X =1, then BAX =001 location in ROM is selected which
stores 01, i.e. the circuit (D flip-flops) goes to B4 = 01 state with clock trigger. For BA = 01, if X = 0 then
BAX =010 location in ROM is selected which stores 00 that means with NT of clock the circuit goes to state
00 or initial state. If B4 = 01 and X = 1 then BAX = (11 location of ROM is selected which stores 10. Thus
next state becomes 10 with NT. Now at B4 = 10, if X = (0 then 84X = 100 location is selected which stores
11 and next state becomes 11. If we have recorded input values we see when 100 location in ROM is selected
in ROM the pattern ‘011" has arrived in proper order. Stored ROM data is immediately available in the same
clock cycle and we can generate circuit output from this signaling detection.

Thus, compared to previous implementation here sequence detection signal comes one cycle earlier, Also
note that the design process is very straightforward. We don’t need to remember flip-flop excitation table or
simplify design equation, which gives different circuit for different problem. Here, for all problems circuit
remains same only the content of ROM changes. The output logic may also be different but we have an option
to store the output as 3™ bit in the ROM and we then don’t need any output logic equation to be realized by
basic gates. Refer to Problems 11.15 and 11.16.

Mealy Model

ROM based solution of Mealy model uses state synthesis table in the same way as Moore model ROM
locations are selected by present state and input as appears in state table and next state value fills corresponding
ROM locations (Fig. 11.7). Delay flip-flop banks are used in the same way but final output is generated from

3i0 8 decoder By Aun
000 ——+ 0O 0
BH
001l —m—m 0 1
2 010 o | o
X
X " 011 i 0
8 x 2 ROM
100 0 0
101 1 0
110 X X
111 X X
e
k Y
[ Wy B} 1
} Bn IJ D Bn+l
<—
A, D ) Ay
<—
— (LK

ROM based implementation of sequence detector: Mealy model
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D flip-flop outputs (representing present state) and data input. In Moore model we have used ROM outputs
directly to generate sequence detector output. Note that ROM of size 6 x 2 is sufficient for Mealy model and
last two locations of 8 x 2 ROM are not used.

Give design equations for the synchronous sequential logic circuit that has two inputs X
and Y. The output Z of this circuit is generated according to the timing diagram shown in
Fig.11.8.

Solution Instead of word description we have timing diagram explaining the problem. On careful observation we
find Z remains high for one clock period wher ¥ goes from high to Tow and if at that time (¥ low) the other input
X reraains at logic high. Thus if we adopt a Mealy model, the circuit needs one memory element that remembers if
previous state of ¥ was high-for any X= 1, ¥ =0 input. The state transition diagram, state synthesis table and design
equations are shown i Figs: 11.9(a}, (b) and {c) respectively. The design has been done with D flip-flop in which D
input simply foflows next state. Refer to excitation table of Fig. 8.34. _

An X Y Anﬂ Dn Z
IR
o |0 1] 1 1|0
11/0 1 0 0 0 0
tieommos BN NHHEIHF
10/0 01/0 1 (13 (1) (1) é (1?'
lon L a0 e
(a) (b}
Xy Xy
AN 00 01 1110 A4, N\ 00 01 1t 10
ol o {[T T 1| o ol 0j o0 | o0 |0
110 [[1 | tylo ifolofol1
D, = Z=X7YA,

(©)

(@9 hig. 11.9 ) (a) State transition diagram, (b) State synthesis table, (c) Design equations for
Example 11.1
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6. How use of flip-flop is different in ROM based implementation?
7. Complete the table as shown in Q. 5 for ROM based Moore and Mealy models.

.11.6 ALGORITHMIC STATE MACHINE.

Algorithmic State Machine (ASM) is a flow chart like representation (ASM Chart) of the algorithm
a state machine performs. State Transition diagrams though more compact in representation has certain
disadvantages. For relatively more complex problem where number of inputs and states are higher the state
diagram space becomes so crowded that it is difficult to read. The other advantage of ASM chart is that, it
handles implementation issues with greater ease offering better timing information. In ASM chart, square
boxes represents a state. If a state generates an unconditional output (Moore model) it can be specified within
the square box. A diamond shaped box represents decision to be taken and normally the variable or the
condition that is tested is placed inside it with a question mark. There are two exit paths of this decision box
since the decision is binary in nature. For Mealy model, oval shaped boxes are used to describe the output that
depends on present state as well as the present input. Circles are used to denote start, stop of the algorithm
and also the connector point of an ASM chart when it becomes too large and needs to be drawn at more than
one place. Entry and exit of each ASM block is shown by arrow headed connecting link.

We take a new example and discuss its design using ASM chart. ASM chart for sequence detector problem
of previous section is shown in Example 11.4,

Vending Machine Problem

The task is to design a synchronous logic control unit of a vending machine. The machine can take only two
types of coins of denomination 1 and 2 in any order. It delivers only one product that is priced Rs. 3. On
receiving Rs. 3 the product is delivered by asserting an output D =1
which otherwise remains 0. If it gets Rs. 4 then product is delivered
by asserting X and also a coin return mechanism is activated by
output ¥ = 1 to return a Re. | coin. There are two sensors to sense
the denomination of the coins that give binary output as shown in
the following table. The clock speed is much higher than human
response time, i.e. no two coins can be deposited in same clock cycle.

J Coin

X No Coin dropped
0 One Rupee
1

— e @ |

Two Rupees

ASM Chart

The ASM chart is prepared following Mealy model and is shown in Fig. 11.10. The initial state when no coin is
deposited is designated as state a. Note that, sensor output / = 0 indicates no coin is deposited. At every clock
trigger [ is tested and if found 0 the circuit retraces its path to state a and obviously none of Xand Yis asserted,
i.e. no product is delivered or coin returned. If 7= 1. the controller tests J. If J= 0 it goes to state b that represents
Re. 1 is received and if /= 1, goes (o state ¢ indicating Rs. 2 is received. The controller remains at state & if
no further coin is deposited found by checking /. Now, if /=1 and /= 0, the machine has received two Re. 1
coins in succession and should move to state c. But /=1 and /= | means a Rs. 2 coin is received following
Re. 1 totaling Rs. 3 the cost of the product. Hence, the product is delivered by asserting X' | and the circuit
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o

ASM chart for vending machine problem: Mealy model
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goes to initial state. At state ¢ if on testing /= 1 that is a coin is deposited, the controller tests ./ to ascertain if
itisRe. 1 or Rs. 2. If J= 0, Re. 1 is deposited and a total of Rs. 3 is received. The product is delivered by X =
1 and the circuit goes to initial state a. Now if /= 1 then Rs. 2 is received totaling Rs. 4. Then Re. 1 is returned
by asserting ¥ = 1, also the product is delivered through X = 1 and the controller moves to initial state a.

State Assignment and State Synthesis Table

The subsequent design steps are same as state transition diagram based method discussed before, We prepare
state table from this ASM Chart. In this example we show how to use D ftip-flop as the memory element
though JK flip-flop can also be used. As expected, filling up of columns that corresponds to D) input in a
given state is easier than JK flip-flop, also the number of Karnaugh map to be drawn for each flip-flop is half
that of JK flip-flop as D flip-flop has only one data input. But all these come at a cost of increased hardware
complexity. This example will highlight this aspect of design issue for synchronous sequential circuit. The
state assignment is done as follows. Since there are three different states we need two flip-flops (say, B and A4)
to represent them. Let B4 = 00 represent state a, BA = 01 state b, BA = 10 state ¢. State B4 = 11 is not used
in this problem. Table 11.4 shows the state table corresponding to ASM chart shown in Fig. 11.10 and also
the D inputs corresponding to every state.

State Synthesis Table for Vending Machine Problem: Mealy Model

Present  State Input . Next State _ Output - D, D,
B 4 I J B, 4., X Y

0 0 0 (1] 0 0 0 0

0 0 0 1 0 0 0 0 0 0

1 0 0 b 0 0 0 1

1 i 1 0 0 0 1 0

0 0 0 1 0 0 Q- 1

0 I 0 1 0 A 0 0 0 i

1 0 1 0 0 0 - 0

1 ] 0 0 1 0 0 0

0 0 i 0 0 0 1 0

1 0 0 1 1 0 0 0 i 0

1 0 0 0 1 0 4] 0

1 1 0 0 1 1 0 0

Design Equations from Karnaugh map and Circuit Diagram

Karnaugh maps for each flip-flop input and both the outputs are shown in Fig. 11.11a along with design
equations. Note that for B4 = 11 we have don’t care states in each map that helps in minimizing design
equation. The final digital controller circuit for the vending machine problem is shown in Fig. 11.11b.

( :W Draw the Delay flip-flop-Decoder-ROM based digital controller circuit for the vending
machine problem.

Solution  The circuit is shown in Fig. 11.12a, The values stored in ROM is derived from state stable, Here we have
used higher ROM size adding two more bits in the memory location for each address but do not need any basic gate
for output logic. However, we can use logic gates as shown in sequence detector probiem and reduce two columns
corresponding to X and ¥ in ROM. : o ‘
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Draw state transition diagram
of the Mealy model vending
machine problem.

Solution The diagram can easily be drawn from ASM
chart (Fig. 11.10} and is shown in Fig. 11.12b.

4 ) Draw ASM chart of the sequence
" detector problem described in
Section 11.2 following Moore
model.

 } State transition diagram of
vending machine problem

Solution  InFig. 11.13 we show the ASM chart of the sequence detector problem described in Section 11.2 follow-
ing Moore model where X denotes the input data bit and ¥ the detector output. '
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ASM chart of sequence detector problem: Moore model

Note the similarity between Moore model state transition diagram of Fig. 11.2a and ASM chart shown
here. Once we arrive at the ASM Chart the rest of the design procedure starting from state assignment up to
final circuit diagram is same as what is discussed in Section 11.6. ASM Chart for the Mealy model sequence
detector is left as exercise for the reader.

. 11.7 STATE REDUCTION TECHNIQUE '

In design of sequential logic circuit state reduction
techniques play an important role, more so for complex
problems. While converting problem statement to
state transition diagram or state table we may use
more number of states than necessary. On removing
redundant states the clarity of the problem is enhanced.
This also offers simpler solution and less hardware to
implement a circuit. We explain two state reduction
techniques through an example.

Let the state transition diagram drawn following a
Mealy model is as shown in Fig. 11.14. The goal is to
identify and remove redundant states, if any and obtain
the reduced state diagram.

A state transition diagram
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Row Elimination Method

In this method, we first prepare a state table where at any given state the next state and present output(s} are
written for each combination of input(s). In the present problem there are only two possible values of input
X=0and X = 1. For 2 input circuits there will be 22= 4 such combinations in this table. Now, two states are
considered equivalent if they move to same or equivalent state for every input combination and also generate
same output.

Figure 11.15a shows the state table for Fig. 11.14 and we see that states b and € are equivalent as next
state and output are same. Therefore, we can retain one of these two and discard the other. Let us retain
and eliminate row corresponding to present state e and in rest of the table, wherever e appears we replace it
by & and get table of Fig. 11.15b. A careful look on this reduced table shows state d and f are equivalent. We
retain ¢f and eliminate row # from this table and replace f with d in rest of the rows and get Fig. 11.15c. This
table places us in an interesting situation as far as equivalence between two rows are concerned. For states b
and ¢ except for next state at X = ( the rest are same. Now & and ¢ would have been equivalent if these next
states are equivalent. For b, next state is ¢ and for ¢, next state is ». Thus bc are equivalent if next states ch
are equivalent which can always be true (from tautology). Thus, b and ¢ are equivalent and state 5 is retained
and row c is eliminated in the same manner and shown in Fig. 11.15d, which cannot be further reduced. The
final reduced state table has three states reduced from six in the original state diagram and final reduced state
diagram is shown in Fig. 11.15e.

Present state Next state Present output
X=0 X=1|X=0 Xx=1 Present state | Nextstate | Present output
a a b 0 0 X=0 X=1]X=0 X=1
vh ¢ d 1] 0 a a h 0 0
c e 1 0 0 b ¢ d 0 0
d b a 0 1 C b I 0 0
Ve c d 0 0 vd [} a 0 1
/ b a 0 1 vf b a 0 1
(a) Original table (b} After one row elimination
Present state Next state Present output
X=0 X=1|X=0 Xx-1 Present state Next state Present output
d a b 0 0 X=0 X=1{X=0 XxX=1
vh C d 0 0 a a b 0 0
Ve b d 0 0 b b d 0 0
d b a 0 1 d b a 0 1

(c) After two row elimination (d) Final reduced table after three row elimination
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Implication Table Method

Implication table provides a more systematic approach towards solution of a complex state reduction
problem. For # states in the initial description we have n—1 rows in implication table and as many number
of columns. Refer to implication table of Fig. 11.16a for the given state reduction problem. The cross-point
in an implication table is the location where a row and a column meet. Here, the conditions for equivalence
between the states crossing each other are tested. We use state table of Fig. 11.15a derived from state transition
diagram to fill up implication table. The steps to be followed are given next.

b & e.e

ai o d:eldf)
c / df cre(d)(cer=(df) (ce)

b (df) (ce) (b) = (df ) (bee)
d a:a(df)(bce)
. ﬂ; NN ;‘;p P = (df'} (bce) (a)
he

4 v

a b ¢ d e

(a) (b)

Implication table method of state reduction; (a) Implication table,
(b) Partition table

In Step 1, we identify the states, which cannot be equivalent, as their outputs do not match. This we denote
by putting a double-cross in respective cross points. In this problem state  and fonly have output = 1 for X'=
1 unlike other states, Thus, intersection of & and f with others except themselves are double crossed.

In Step 2, for other cross points, we write necessary conditions for equivalence of intersecting states.
As an example, let us look at intersection of states a and b. To get the necessary condition we refer to rows
starting with g and b in state table of Fig. 11.15a. We find that at X' = 0, a staysat @ while b goes to c and at X'=
1, a goes to b while b goes to d. Thus, a and 4 can only be equivalent if next states  and c are equivalent and
also if b and d are equivalent. This is written at cross point of @ and b in implication table. Note that output
of @ and b match, else, it would have got a double cross in Step 1. We similarly fill up other cross points and
note that b and e are equivalent and does not require any equivalence between other states and a double tick
mark is placed at that cross point.

In Step 3, we use relationships obtained in Steps 1 and 2, specially the ones represented by double cross and
double tick mark and check if any other cross points can be crossed or ticked. Since df equivalence depends
only on equivalence be which is true, they are equivalent and that cross point can be ticked. Similarly, ac
cannot be equivalent, as it requires #fto be equivalent which is not true. Hence, ac intersection is crossed.

In Step 4, we keep repeating Step 3 and cross or tick (if possible) as many cross points in the implication
table as possible. We see ab and ae cross points can be crossed as they need ac to be equivalent which is
crossed in the previous step. With no further crossing and ticking possible the implication table is fully
prepared and we go to Step 5.

In Step 5, we check pairwise equivalence starting from rightmost column e of implication table. Since,
the only cross point, representing ef equivalence along column ¢ is crossed there is no equivalence possible
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at column e and we write ¢ in Fig. 11.16b in the first place. In column d, we find df are equivalent and along
din Fig. 11.16b the same is written. In column ¢, we find ce are equivalent as dfis equivalent. In column b,
equivalence between be and hc can be observed as ce and df are already considered equivalent and the same
are written along c and b. Note that if p and g are equivalent and so are ¢ and r then p and g are equivalent. In
that case, pgr can form one group and any one of its members can represent the group. Since, column a does
not give any equivalent pair the final partition table is represented as P = (df) (bee) (a) and has three partitions.
Then three states are sufficient to solve this problem each representing one partition. If J represents any of
dfand b represents bce in Fig. 11.16b we get reduced state table as shown in Fig. 11.15d and corresponding
reduced state diagram is shown in Fig. 11.15e.

Note that the final result is same by both the state reduction method. However, in row elimination method
one has to draw many tables for a complex state reduction problem and depend a lot on observation power,
The implication method being more systematic is more conclusive.

We shall discuss state reduction technique for incompletely specified state table in connection with
asynchronous sequential circuit design in Section 11.10. In such problems some of the next states or output
remains unspecified and treated as don’t care condition.

Reduce state transition diagram (Moore Model) of Fig. 11.17a by (i) row elimination method
and (ii) implication table methed

{d) Final reduced table after elimination of two rows

(@9 Fig. 11.17 ) Reduction by row elimination method

Present state Next state Present output Present state Next state Present output
X=0 X=1 X=0 X=1
a a b 0 a a b 0
Vb < d 0 b < b 0
c d e 1 Yo b e 1
¥d c b 0 Ve b c 1
e b ¢ 1
(b} Original table (c) Table after elimination of one row
Present state Next state Present output
X=0 X=1
a a b 0
b c b 0
c b ¢ 1
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Solution

{i) Referto state table of F1g 11 l7b obtamed ﬁ'om state transmon dlagram Companng row b and d we see thcy
are equivalent because that needs no other consideration except equivalence between themselves. Retaining b
and replacing d by b in rest of the table we get Table of Fig. 11.17c. There we find c and e are equivalent and we
retain ¢ and replacing e by ¢ get Fig. 11. 17& We see no further reduction is possible and final reduced state table
that has three states..

(ii) Refer to state transition diagram znd state table developed from it. Implication table is shown in Fig. 11.18. The
non-compliance of output makes cross-points de, be, ae, cd, be, ac non-equivalent and hence double crossed.
From this we find ab and ad cannot be equivalent as that requires ac to be equivalent which is not true. Finatly
movitig columnwise starting from d we get partition table and final pariition P has three groups Hence, the
number of states is reduced ta 3 from 5 by this technique.

b S d:d
- — 2 c:d(ce)
c] X ' _ _ b d (ce) (bd) = (ce ) (bd)
. a:(ce) (bd)a
w1
41 7} b P = (ce) (bd) (a)
. bd
. ce

e . _
B™ Reduction by implication table method

-
p

(@RSELE-TESY)

k9 What is an ASM chart?

9. What is an unphcanon table’?

10 What is a partition’ table" o

Il What is the uscﬁllness of state reducuon techmque?

PART B: ASYNCHRONOQUS SEQUENTIAL CIRCUIT

Asynchronous Sequential Circuit, also called Event Driven Circuit does not have any clock to trigger change
of state. State changes are triggered by change in input signal. In clock driven circuit all the memory elements
change their states together. In spite of all the advantages it offers, there are certain limitations with such
circuit. The most important being the speed of operation. This is limited by the clock frequency since, state
change can only take place at time ¢ = 7, where T = Time period of clock signal and inverse of frequency
and » is an integer. If the input changes in a manner that warrants change in the state, it cannot do that
immediately and wait till the next clock trigger comes. Asynchronous sequential circuit is a solution to this
however, design of such circuit is very complex and has several constraints to be taken care of, which 1s not
required for synchronous circuit. Here, we shall discuss fundamental mode of operation of asynchronous
sequential circuit where output change depends on change in input level. There is another type of such circuit
called puise mode where output change is affected by edge of the input pulse.
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. 11.8 ANALYSIS OF ASYNCHRONOUS SEQUENTIAL CIRCUIT .

As we have already noted memory is the most important element in sequential logic circuit. In synchronous
system we use clock driven flip-flops which we cannot work here. This is done through feedback similar to
basic latch portion of a flip-flop. Before we discuss that let us see how a two input ANL} gate and two input
NAND gate behave with output fed back to one of the input, We shall use Karnaugh map for the analysis,

AND Gate

The two input AND gate with output fed back as one input is shown in Fig. 11.19a. The circuit can be redrawn as
showninFig. 11.19b that includes the effect of propagation delay of the gate (say, 7), the finite time after which a
gatereacts to its input. Thus, if X is current output obtained following logic relation and x is the feedback output
we write, x = X (+~7). The truth table is also cailed state table and each location in Karnaugh map a state of the
asynchronous sequential circuit. Figure. 11.19¢ shows the truth table of givencircuitand encircled states indicate
stable condition of the circuit. For example, if 4 =0 and by any reason previous output(that is currently fed back)
x =0 then, X =x.4 = 0.0 =0, After time 1 = 7, x takes the value of X, i.e. 0 and because of that output X does
not change. Thus, x = 0, 4 = 0 represents a stable state and is encircled. Similarly x = 0, 4 = 1 position and x
= 1,4 =1 positions are also stable as in each of these cases .X = x and no change in output is necessary.

do 1
| = oo
_3 _;Y A—'“ﬁD‘_j( 1 0|®
X=x4

(a} AND gate (b} AND gate with (¢} Truth table
propagation delay

Two input AND gate with output feedback

Let us now consider the following case. The circuit is at x = 1, A=1, a stable state. Now 4 is made 1 and
held at that value. How does the circuit react? First of all, following Karnaugh map the circuit moves one step
left,iefromx=1,4=1tox=1,4=0 position because x, the feedback input takes finite time, T to react. At
this position X = 0. Therefore after time 7, x becomes 0, i.e. we move up by one position in Kamnaugh map to
x=0, 4 =0 position. Here, X = 0 and thus x = X and as long as 4 does not change the circuit remains in this
position, a stable one. Thus, we findx=1, 4 =0 position is unstable.

We make an important observation from this discussion which is universally true for asynchronous
sequential circuit. For any state, if x = X then the circuit is stable and if x#X it is unstable.

NAND Gate

We extend the above observation to feedback NAND circuit shown in Fig. 11.20(a) and arrive at the Truth
Table given in Fig. 11.20(c). It is interesting to note that for 4 = 1 there is no stable state and x = X” for both
x=0and x = t. Thus there is oscillation between x = 0, A=landx=1,4=1 state.

Two Input NAND Latch

In analysis of asynchronous sequential circuit there is an important constraint to be followed. Though there
can be more than one input feeding the circuit, at  time only one input variable can change. The other input
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A

i

B S
X  A— X 1

X=xA

(a) NAND gate (b) NAND gate with {c) Truth table
propagation delay

Two input NAND gate with output feedback

can change only when the circuit is stabilized following the previous input change. The time reqguired to
stabilize the circuit is in the order of propagation delay of a gate, i.e. in nanosecond order. Similarly, if there
are two or more output variables only one output variable can change at any time instant, as propagation
delays in different paths are different. While analyzing the NAND latch given in Fig.11.21a we shall keep
this in mind.

AB
’__ {17} .00 01 11 10
i ) S 01 OO 1
4 . 1oy o oo
{a) NAND latch with propagation delay (b) Truth table

Two input NAND latch

The stable and unstable states are arrived at (Fig.11.21b) following discussion in preceding section, i.e. for
any given combination of x, 4, B if, X = x, the circuit is stable otherwise not. Stables states are encircled and
arrows show the movements from transient states. Now let us see how input changes affect the output. For
each input combination the circuit has at least one stable state and this stable state will be the starting point
of our discussion in each case.

input AB Change from 00 to 01 The circuit moves from x4B = 100, a stable position to xAB = 101
(Note, x takes a time 71to react to a new set of input) which is unstable and then moves to x48 = 001, a stable
state that has output 0. Therefore, a 00—01 transition in 4B has output X making 1 —0 transition.

Input AB Changes from 00 to 10 The circuit moves from x4B = 100, a stable position to xAB = 110,
another stable state that has output 1. Therefore, a 00— 10 transition in AB does not alter the value of output,
X=1.

Note that AB cannot change from 00 to 11 as there will be a finite delay, however small it may be between
A and B change. Thus, the transition path of 4B is either 00—01—1] (then output changes as 1 30-0) or
00— 10— 11 (output changes as I -1 —1) depending on which of 4 or B changes earlier. Therefore, output is
0 or 1 depending on intermediate value and in asynchronous logic design such transitions are not allowed.

Following this procedure, we look at other possible transitions of state (x4B) for input change and get
transition Table 11.5. Note that, at AB = 11, there are two stable states x48 = 011 and xAB = 111. Transition
of 4B, 0111 reaches x4B = 011 state while 10—11 reaches x4B = 111. Thus looking at output of the
circuit when 4B = 11 (also called idle input that does not force change) one can tell whether 48 = 01 or 10
before 4B becomes 11. Thus at AB = 11, the circuit generates output x = X from memory or it has latched the
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(@9 Table 11.5 ) Transition Table of NAND Latch
Input AB State(xAB) transition Output X Remark
0001 100—101 =001 13030 At AB = (0,
00—-10 100—110 1—1 stable x =1,
100 001 - 000— 100 0—=1-=1 At AB =101,
0111 001—-011 00 stable x = 0,
186—-00 110— 100, 1-1 AtAB =10,
1011 110111 1>t stablex=1,
i1-01 011 —001, il1--101—-001 00, 1-0-0 AtAB =11,
11->10 011-010-5101, 111110 0=i—-1, 11 stablex=0, 1.
before AB becomes 11. Thus at AB = 11, the circuit X

generates output x = X from memory or it has laiched
the information of previous input combination.

) () Analyze

the Mealy model

asynchronous sequential circuit

of Fig. 11.22 and show its stable
state and corresponding outputs.
(ii) Give the state diagram of this

circuit.

X 7

An asynchronous sequential
circuit: Mealy model

Solution  To analyze the circuit we con.sxdcr x=X(t-1) where 7is'the ctmm!atrve propagatlon delay from input side
up to X. For ali possible combinations of x4 B we get X and ¥ following logic relation shown in the circuit and prepare
Karnaugh map of Fig. 11.23a. States where X = x are stable and encircled: Qutputs corresponding to each state and
input combination are shown beside. (ii) Since, there are two stable states x = 0 and x = | the state diagram ¢an be
drawn from Table 11.5 by considering all possible input combinations for each state as shown in Fig. 11.23b. Note that
the output is dependent on inputs as well as state and is shown along the transition path beside the input.

AB
x 00 01 11 10
0{@/0|@o| L/0]@0
1forofo/ti@1|Gro

(a)

Fig. 11.22

(

12. What is fundamental mode of operation of asynchronous sequential circuit?
13. If there are more than one input to such a circuit what constraint is imposed on them? -

™

(a) Karnaugh map, (b) State dlagram for asynchronous circuit shown in

45 4
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11.9 PROBLEMS WITH ASYNCHRONOUS
- SEQUENTIAL CIRCUITS

Before we go for design of asynchronous sequential circuit we would like to Jook into some important design
related issues. These are non-issues in synchronous circuit where external clock trigger arrives after all the
inputs are stabilized. Asynchronous circuit responds to all the transient values and problems like oscillation,
critical race, hazards can cause major problem unless they are addressed at design stage. To explain thesc
problems we take help of Truth Table shown in Fig.11.24 where the circuit has two external inputs 4, B and
two outputs X, ¥. Both the outputs are fed back to the input side in the form of x and y but with different
propagation delays. Thus x, y cannot change simuitaneously but with time delays 71 and 72 respectively and
we can write x = X(t—11) and y = Y{(t-12).

{z1} xyAE 00 01 11 10
—{ =2} 00 | (00)1=11 0l
t / I ( ) Oscillation
i Asynchmflcius - Y 0L 00 00 00
sequentia
j circuit < 11 @ \@ ()0<-—®

10 A\ 1 oo

Critical Noncritical
race race
a) Block diagram {b) Truth table
g

(a) Block diagram, (b) Truth table of a 2-input, 2-output circuit

Refer to the discussion in Section 11.8. The stable states are encircled in the circuit where xy = X'Y. But
there are certain major problems with this truth table which we discuss in a future section.

Oscillation

Consider, the stable state xy:4 B = 0000, where x = X and y = Y. If input 48 changes from 00 to 10, the circuit
goes to xy4B = 0010 state and then output XY = 01. This is a transient state because xy # XY. After time 72,
y takes the value of ¥ = 1 and the circuit goes to xy4B = 0110 where output XY = 00. This again is a transient
state and after another propagation delay of 72, the circuit goes to x3:48 = 0010. Thus the circuit oscillates
between state 0010 and 0110 and the output ¥ oscillates between 0 and 1 with a time gap 72. In asynchronous
sequential circuits for any given input, transitions between two unstable states like these are to be avoided to
remove oscillation.

Critical Race

Next we discuss race condition that could be a major problem in asynchronous sequential circuit. This occurs
when an input change tries to modify more than one output. In the truth table of Fig.11.24b, consider the
stable state xy 4B = 0000. Now, if 4B changes to 01 the circuit moves to xpAB = 0001 where XY = 11. Now
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depending which of 71 and 12 is lower, xy moves from 00 to either 01 or 10. If 7l is lower, x changes earlier
and the circuit goes to x.4B = 1001 which is a unstable state with output X¥ = 11 and xy # XY. The circuit next
moves to state xy48 = 1101 which is a stable state and final output XY = 11. If 72 is lower, y changes earlier
and the circuit goes to xy4B = 0101, a stable state and the final output is 01. Thus, depending on propagation
delays in feedback path, the circuit settles at two different states generating two different set of outputs. Such
a situation is called critical race condition and is to be avoided in asynchronous sequential circuit.

Race can be non-critical too, in which case its presence does not pose any problem for the circuit behavior.
In the truth table, consider stable state xy48 = 1110. If input 4B changes to 11, the circuit goes to xydB =
1111 where output XY = 00. Note that both the output variables are supposed to change which cannot happen.
Again depending on propagation delays xy becomes either 01 or 10. If xp» = 01 then the circuit moves to xyAB
= 0111 and then to 0011 and settles there. If x> = 10 then the transition path is 1111—1011—0011. In both
the cases final state is 0011 and output is 00. Since, the race condition does not lead to two different state it
is termed as non-critical race.

Hazards

Static and dynamic hazards causes malfunctioning of asynchronous sequential circuit. Situations like ¥ = A
+ A’ or Y = A4’ are to be avoided for any input output combination with the help of hazard covers in truth
table. A detailed discussion on how to avoid hazard appears in Section 3.9. In circuit with feedback even
when these hazards are adequately covered there can be another problem called essential hazard. This occurs
when change in input does not reach one part of the circuit while from other part one output fed back to the
input side becomes available. Essential hazard is avoided by adding delay, may be in the form of additional
gates that does not change the logic level, in the feedback path. This ensures effect of input change propagates
to the all parts of the circuit and then only feed back output, generated from that input-change makes its
presence felt.

(: W In an asynchronous sequential circuit, the AB

state variable outputs of X and Y are related xy 0o 01 11
with primary inputs 4 and B and its own

10
feedback x and y as shown in Kamaugh 00} h 1

map of Fig. 11.25. Can the circuit face any

problem in its operation? 01 11 It
Solution  Yes, the circuit may face problem in its operation. When 11 10 i @ 10
the circuit is at stable state xy4B = 1111 and input 4B changes from
11510 the circuit oscillates between xy4R = 1110 and xyAB = 1010.
Also there can be a critical race problem if at stable state xyAB = 10 11 11

0001, input 4B change from 01 to 00. The circuit may settle at xy4 B
= 0100 or £y4 B = 1000 depending on which of x and y changes first at
the feedback path. Non-critical race situation occurs if at stable state
xyAB = 0010 the input 4B change from 10 to 00.

Karnaugh map for
Example 11.7

OISELE-TEST)
14, What is racing? What is the difference between critical aﬁd non-critical race?
15. ‘'What is essential hazard? -
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11.10 DESIGN OF ASYNCHRONOUS
SEQUENTIAL CIRCUIT

The discussions in previous sections show several design constraints for asynchronous sequential circuit.
This makes the design of such circuit complex and cumbersome and if benefits like speed are not of critical
importance, synchronous design is preferred to asynchronous design. In this section we explain the design
steps of asynchronous sequential circuit through an example. The problem we attempt to solve is described
next.

The Problem

A digital logic circuit is to be designed that has T
two inputs 4, B and one output X. X goes high if A _ L i P

at A = 1, B makes a transition 1 — 0. X remains B 1 1 | l ;
high as long as this 4 = 1, 8 =0 are maintained. If ' i
any of 4 or B changes at this time output X goes X N ’_u—_l_
low. It becomes high again when at 4 = 1, B goes
from 1 to 0. The timing diagram cotresponding to
this problem is shown in Fig. 11.26.

State Transition Diagram

From the problem statement we first develop a state transition diagram, say using Moore model. The state
symbol and output at that state is shown together within a circle in this diagram (Fig. 11.27). Let the initial
state be considered as @ when AB = 00 with output 0. As long as 4B remains 00, the circuit remains at a.
Note that in synchronous sequential circuit between two clock trigger input might change but the state of the
circuit remains same. Here, as soon as one of 4 or B changes the circuit may immediately move to different
states. Note that A and B cannot change together, a constraint we have to adhere to in asynchronous design.
At state a, if input AB = 01, the circuit goes to state b and if input AB = 10 it goes to ¢ (00— 11 prohibited).
Both & and ¢ generate output 0 as they have not yet ful-
filled the condition stated in the problem for assertion
of output. The circuit remains at 5 for A8 = 01. If 4B
changes to 11, the circuit moves to state d with output
X =0 and if AB becomes 00 the circuit goes back to
a. Similarly the circuit stays at ¢ if input stays at 10
but goes to d receiving 11 and to a receiving 00. Note
that at state d, the input 48 = 11 and now if B—0 then
condition for output X' = 1 is fulfilled and next state e
for AB = 10 shows output as 1. The circuit remains at
state e as long as AB = 10, It goes back to state & if 4B
becomes 11 because if B again goes to 0 output should
be high. However at ¢, if AB changes to 00 the circuit
goes to initial state @ as AB becoming 10 following 00
will not assert output.

State transition diagram of
the problem
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Primitive Table

The next step is to form state table from state transition dia- AB
gram. In this table if all the rows representing a state has 0 ol " 110 x
only one stable state for all possible input combinations and
it is termed as primitive table, or primitive flow table or sim- a @ by X1y ¢ |0
ply flow table. Often we can skip step one and directly go
to primitive table from problem statement. Primitive table b a @ d | x2 |0
prepared from state transition diagram is shown in table Fig. S A B @ 0
11.28.

Note that each row in this table has one don’t care state. d|l x4 | b @ e 0
The don’t care state in each row comes which asks for both :
the input variables to change to move from stable state, a el a | x5} 4 @ ]

condition not allowed in asynchronous sequential logic. The
don’t care states have been given suffix like 1, 2 which is Primitive table for the
not a must. However, this helps in next step where we check e problem

state redundancy.

State Reduction

It is always useful to check state redundancy before going for actual circuit design. Removing redundant
states helps in generating the circuit in a simpler way and with less hardware. We use implication table for
this example to remove redundant state, if there is any. The implication table, drawn from primitive table and
state reduction is shown in Fig. 11.29. For preparation of implication table refer to discussion in Section 11.7.
Note that in asynchronous design, when there are don’t care states in state table, this is called incompletely
specified table. For this, state reduction can be done as follows.

d,x1 _
b %2 d. d
dx1 b,x3 ¢:ed
¢ b:x3 c:xz b:ed (be) = d (be) X2=¢,x3=b
dx1 ax4 | axd a:d(bc) (ab) (ac) = (abe) xi=d
’ ’ h.x3
Tt | @ | in P = (abc) (d) (e)
e
a b c d

State reduction by implication table

Since state e cannot be equivalent with any of a, b, ¢ and d (output being different) we put double cross
right in the beginning for row e of implication table, Next we find @ and 4 cannot be equivalent as that requires
¢ and ¢ to be equivalent which is not. Similarly, ¢ and & cannot be equivalent and we cross these two places
in row 4 of implication table with single line. Now let us try to find equivalence by moving along columns,
In column d and c there is no equivalence possible. In column 4, equivalence between either of & and ¢ or &
and d is possible. But, both (bc and bd) equivalences are not possible as it requires don’t care state x2 to be
made equivalent to ¢ and e while ce themselves are not equivalent. In column a, we see {c, x2) equivalence
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may make a and b equivalent. Therefore, from column b, we get (bc) equivalence by making ¢, x2 and b, x3
equivalent. In column a, by assigning x1 to d we can make (ah) and (ac) equivalent and there is no conflict
with assignment of don’t care states. Since, (be) (ab) (ac) = (abc) partition table has three different groups
(abc), (d) and (e). Thus the states are reduced to 3 from original 5. Let state a represent the group (abc). Now
the reduced state table is as shown in Fig. 11.30a and reduced state transition diagram in Fig. 11.30b.

State Assignment

This step in asynchronous sequential circuit design has AR

zlo be done very carefully so that a valiq sbtlate tran;ition 00 0l A 11 10 X
oes not require two or more output vanables to change

simultaneously which may lead to racing problem. In this “ @ @ d @ 0

problem there are three states in the reduced state diagram il xa | a @ . o
which needs two variables to represent them. Figure

11.30 shows that we cannot avoid two variables changing
together in one or more occasions for the reduced state
transition diagram. If {a.d,e} is represented by {00,01,10}
it occurs twice for d—e and e—d transitions in state
transition diagram. A representation of {00,01,11} requires
two variables to change only once when e — g transition
occurs. The solution to this may be found if the unused
fourth combination of two variable representation is used
as a dummy state, say ¢. We include ¢ between ¢ and a.
Note that, if one dummy state is not enough we may need
1o use a third variable to represent the states that will make
2°-3 = 5 durnmy variable available for this purpose. Let us
represent the states in this problem by two variables PQ in (b)

the following way Reduced (a) State table,
a0 401 e 11 ¢ 10 (b) State transition

The modified state diagram and state table with dummy diagram
variable ¢ =10 included are shown in Fig. 11.31. Note that
¢ is an unstable state and before the input can change it
goes to next stable state a. We represent state variables by
P and @, the corresponding feedback variables are repre-
sented by p and ¢ respectively.

Design Equations and Circuit Diagram

We use Karnaugh map to get expression of state variables
P and Q as a function of input 4, B and feedback variables
p and g. The equations derived from Karnaugh map are
shown in Fig. 11.32. The equation of output X is generated
from P and  as we use Moore model. The final circuit is
developed from these equations and is shown in Fig. 11.33.

7} Modified state transition
diagram




Digital Principles and Applications

AB AB
b 00 0l U 10 oo 000111 10
00 01 ol ofolo]o
o1 x | 00 11 o1 x1| o | o |1
mlw| x| o ni 1|l x| ol
10| 00 % * x 10 0 X X X
P=gB
(a) (b)
AB
pa 9001 1110 ,
ool o ! o [[1]| o
p 0 1
ot x| o {{1I[ 1 ol o] o
1l o | x [|[1]] 1 1| o1
10| 0 X e X
O=gd+AB X=PO

© (d)
m (a) Reduced state diagram from Fig. 11.27, (b)-(d) Karnaugh map and

design equations

It is left to the reader to analyze this circuit A4—
and verify the timing diagram shown along with

the problem statement. Now, that we have seen

all the steps in asynchronous sequential logic de-

sign we are in a position to appreciate how com- B 0

plex the process is compared to synchronous se- X
quential logic design. Thus the later is preferred r £

if issues like speed, clock skew, etc. are not of e
Circuit diagram of asynchronous

critical importance. . .
P sequential logic for the problem
' hm Design an asynchronous in Fig. 11.23

sequential logic circuit for state 10
transition diagram shown in 11
Fig. 11.34.
in order. Figure 11.358 shows state table through Kamaugh 11

map. Since the state transition diagram has two states we
need one (log,2) output feedback serving as memory. Let
the output variable be tenmed X and its feedback x. If we
represent curtent state g as x = ¢ and b as x = | then output

00

State transition diagram for
Example 11.8
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Xcanbeexpmssedasshewan;g. 1135b Theasynchronoussequennallegzcmcmtdmwnfmmdlwgneqmtmn
is shown in Fig. 11350 o

AB |
00 01 11 10 AN 00 01 11 10 i L__

al@{@| s ]| o oo |[T]1 5
slele o lEmn)]

@ e ()X =A 3B : @
| X “solution for Example 11.8

o

16. What is a primitive flow table?

17. What is an incompletely specified table?

18. What is a dummy variable?

19. What is the advantage and dxsadvantage of asynchronous over synchmnn’ns aequentlal
circuits?

1111 FSM IMPLEMENTATION. IN -HDL

We shall conclude our discussion on HDL showing how one can represent a Finite State Machine (F SM) in
HDL. We take up the Mealy Model shown in Fig. 11.2b as illustration and the code is given next. Note that,
we have introduced two variables Clock and Reset, which is not explicit in the figure. The clock is used for
synchronous state transition of the circuit (at negative edge) and active low asynchronous Reset is used to
initialize the circuit to state a.

module MealyFSM(x, Clock Reset Y),... . i : Bt
imput X,Clock,Reset; - .0 .. -0 . oL T
output  ¥; E “__: - S . ‘ :
reg Y; : o
rzeg. . [1:0] PS,NS; //PS. reprasents Present State, NS Next State . . R
parametar a=2'b00, b=2'b01, c=2’blo, //8tatas shown in fig, ngen bina:y uaiue
always @ (negedge Clock or nngudgt Reset) //Reset or state change :

if (~Reset) PS=a;

else PS=NS;
IIIIYI @ {PS or X) //Determlnes next state

if (PS==a && X==0) NS =a;

else if (PS==a && X==I1)" NS=b;

else if (PS==b §& X*xO) NS5=a;

alse if (PS==b £& X==1) NS=c;

alse if (PSesc && X==0) - NS=a;

else if (PS==c && X==1) NS=c;
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always @ (PS or X)) //Determines output which is dependent both on present
if (PS==c && X==0) Y=1; //state and present input as Mealy Model
else Y=0;

Endmoduie

We have defined each state by an equivalent binary number through keyword parameter. The first always
block does state change at negative edge of clock when Reset is held HIGH. The second always block
decides what will be next state if current state and current input is in some combination. The third always
block decides output based on current state and current input. Note that all these assignments follow the
conditions stated in FSM Mealy model of Fig. 11.2b.

Now let us try to test this circuit by feeding an input X = 01011001 101(first value of X fed is 0 as if data
is coming from right) by creating a test bench and appending it to above code. Let us verify whether the
circuit can detect pattern ‘110° (as data is considered to come from right) and generate appropriate output.
The following test bench can generate such pattern and the output is plotted against clock and input X in the
subsequent tirning diagram, obtained from Verilog simulation.

module testMealyil:; .

_rag Clock, Reset, Xir

wire Y;

initial . o S
bagin  Reset = 0; //Initial value Of'iékéf#?} thi
X=0; . // input is 0 at start SERSEIMTRR S

#£20 ¥=1; - #20 X=0; #20 X=1;  #20 X=l; . //Change. in input date at. -
$20 X=0; %20 X=0; #20 X=1l; #20 X=1; //odd multiple of iftns .
#20 X=0;  #20 x=1: o : Jfstarting from 30 ns.

end
// Clock generator follows
initial

begin

Clock = 17b0;

repeat (21) .

#10 Clock = ~Clock: //Clock inverts at every l0ns so -that

end "~ /7/negative edge of clock comes at even multiple of 10 ns
MealyFSM MFSM(X;Clock,Reéset,Y); : "
endmodule

Ons |20ns |40ns |60ns ‘Sﬂns ‘]00ns 120ns Jl40ns ‘160ns IlSOns 1200ns
Ll I Lol

Lo, | R I I I B | T T I S I G N T Sy |

testMeaiy. Y S\ A
lestMealyClock | 7\ [ \ [ \ [ \ / \ S \ S\ [\ T\ \]
testMealy.Reset /

testMealyX | ~ ~——— [~ /T
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Find from the timing diagram X = 0 up to 30 ns from start and remains 1 till 50 ns and so on. Clock
negative edge comes at 20 ns, 40 ns etc. When X remains | at two negative edges of clock and a 0 follows
like in between 110-120 ns ¥ = 1 and similarly between 190-200 ns. ¥ = 0 elsewhere and this is what the
FSM is supposed to perform, i.e. detect * 110’ (data from right, if from lefi “011°) that is input bit 1, followed
by ancther 1 followed by 0.

Give Verilog HDL description of the Moore Model shown in Fig. 11.2a

module MooreFSM(X, Clock,Reset,Y);
input X,Clock,Reset;
output . Y¥; reg Y; ) .
reg [1:0] PS,NS: //PS represents Present State, NS Next State
parameter a=2'b00, b=2'b0l, ¢=2'bl0, d=2'bll; //Four states given binary value
always @ (negedge Clock or negedge Reset) //Reset or state change
if (~Reset) PS=a; )
else PS=NS; '_ ) .
always @ (PS oxr X} //Determines next state
if (PS==a && X==0) Ns=a; '
else if (PS==a 5§ X==1) NS=b; -
else if (PS==b && X==0) Nb=a; |

‘else if  (PS== - NS=c;
else if (PS==C. &§ '} - NS=d;
else if (PS==c ) . Ns=c¢; .

else if (PS==d && X==0)  NS=a; -
~elge if (PS==d && X - NS=b;

always @ (PS) . //Determines eutput which is dependent only on .
if (PS==d) ¥=1; //present state due to Moore Mealy Model
else Y=0; - ' Lo T

endmodule

We conclude our discussion on HDL here. The objective had been to make one get started with basics
of HDL design. Dedicated books and courses deal with this subject in greater details. One should note that
free or student version of Verilog compliler has limited ability and trial full versions are free only for the
trial period. Also the hardware device on which the design is exported is not cheap. It is thus not useful for
simple design problem except for finding functional error through simulation. But it definitely is cheaper and
convenient if one considers a large complex design problem. The hardware devices commonly used to load
HDL codes are discussed in Section 13.6 of Chapter Memory.

. PROBLEM SOLVING WITH MULTIPLE METHODS .

Apartofthe simplistic digital control unit of a hypothetical Automatic Teller Machine {ATM})
workslike this. The ATM senses ATM card insertion by assertion of aninput £, Acorrecttyping
of Personal Identification Number (PIN} is sensed by £. Transaction is done by asserting
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TR and card return by CR is if P = 1. If the process is cancelled by pressing push button
‘Return’ that asserts R, transaction does not take place but card is returned. If not cancelled,
the user gets two more opportunities to enter PIN. But third incorrect entry locks the card
by asserting CL.

Solution The input and output variables assertions are as follows.

Imput: .
Card inserted 7 = }, Card not inserted /= 0,
*Retumn’ button pressed R = 1, ‘Return’ button not pressed R = 0.
PIN correctly entered P = 1, PIN incorrectly entered P = 0.
Output:

Card to be returned CR = 1, Card not to be returned CR = 0.
Transaction allowed TR = 1, Transaction not allowed 78 = O
_Card to be locked CL =1, Card notto be locked CL= G

In Method-1, we make use of Moore Model and ASM chart which is shown in Flg 11.36.

We find there are six rectangular boxes of six states (a to /). Thus, it requires three ﬂnp-ﬂops which
can handle up to eight states. The three inputs and three present states of fip-flops would require total 3

+ 3 6 variable Kamnaugh Map for design. The ROM-Delay ﬂlp-ﬂop approach may thus be pteferred
Let the state assignments of three flip-flops, say C B, andA be as follo

a-CBA=000, - b:CBA=001, .' ‘¢ CBA= 010

d: CBA 011 ' e: CBA‘”IGO f CBA-—IOI
Since, it is a Moore Model, the output corresponding to each stateare R
‘aCR=0,TR=0,CL=0 - bh:CR= OTR OCL 0.
¢:CR=0,TR=0,CL=0 - ' d:CR=0,TR=0,CL=1"
¢:CR=1,TR=0,CL=0 f‘CR“—‘”I TR=1,CL=0

Then the state transition table can be as given in Flg 11.37.

Three present states and three inputs call for a 6 to 64 decoder. Three next states require a storage of
three bits in each ROM address. Thus this implementation will require 3 ﬂlpmﬁops one 6 to 64 decoder
and one 64 X 3 ROM.

‘The outputs are derived from present state, i.e. flip-flops in a Moote Model. The combinatorial cir-
cuit required for this is arrived from Kamaugh Maps presented in Fig. 11. 38

The ﬁnal realmtwn is shown in Fig. 11.39.

" Note that the reqmrement for decoder, ROM, etc. can be reduced notmg that not all 64 combinations
are required for the solution, e.g., if 7 = 0, no matter what the other values are, the circuit remains in
state a.

In Method-2, this is ASM chaﬂ based appmach targeting 2 Mcaiy Model The. omput ig asscrted as
soon as the condition is fuifilled. Flgure 11.40 shows the ASM chart. .
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Y
N
€ N 4 f
CR=1 CR= CR=
TR=0 TR=0 TR=
CL=0 CL= CL=0
! i !

ASM chart for Moore Maodel: Solution using Method-1
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Present State friput Next Stale
Cp By,  Ap 1 R P Cn+1 Bns1 Ap+i
a: 0 0 0 0 X X 0 0 0
a: 0 0 0 1 0 a 4] 0 1
b 0 0 1 1 1 X 1 0 0
h: g 0 1 1 0 1 1 0 1
b: 0 0 1 1 ] 0 0 1 0
c: 0 1 0 1 1 X 1 0 0
c: 0 1 0 1 0 1 1 0 1
c: Q 1 0 1 0 0 o] 1 1
d: 0 1 1 X X X 0 0 0
e: 1 0 0 X X X 0 0 0
f: 1 0 1 X X X 0 0 0

State Transtion Table for Moore Model: Solution using Method-1

BA B84 BA
CN0 01 UL 10 AN 00 01 1110 c>_00_01 11 10
0 olojolitilo 010lofo]o

X 1[efof o [ ]X

CL =54 TR=C4

We find there are three rectangular boxes or three states (a to ¢). Thus it requires two flip-flops which
can handle up to four states. We continue with the ROM-Delay flip-flop approach.

Let the state assignments of two flip-flops, say B and 4 be as follows
a: B4 =00, b: BA =01, c:BA =10
Then the state transition table can be as given in Fig. 11.41, |
Two present states and three inputs call for a 5 to 32 decoder. Two next states require storage of
two bits and in each ROM address. The three outputs can also be directly generated from ROM which

require additional three bits in each location. Thus this implementation will require 2 flip-fiops, one 5
to 32 decoder and one 32 x 5 ROM. The final realization is shown in Fig. 11.42,

Other Methods: As already mentioned, both Moore and Mealy Model can be realized by flip-flops
and combinatorial circuits, as done for vending machine problem in Fig. 11.11. But this becomes
cumbersome when the problem is relatively more complex with Karnaugh Map requiring solution for
more than four variables. But then, QM algorithm can be used for which computer code also exists. The
state transition diagram is avoided here as for larger number of input variables, every node will have
too many branches spreading out, making the diagram very complex. '
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000000 000
000100 001
001100 010
001101 101
001110 100
7 — 001111 100
R— 010100 011
010101 101
P— 010110 100
010111 100
011000 XXX
11111 XXX
fall C
= o D
0 CR}—
B
o 0 o
0 K<
¢rle o
Clock
CR TR CL

Realization using ROM: Solution using Method-1

@
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CR=0
* TR=0
CL=0

ASM chart for Mealy Model: Solution using Method-2, *represents
CR=0,TR=0,CL=0
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Present State Input Next Stafe Output

By An f R P Br+t Ap+1 CR TR CcL
a; 0 0 0 X X Q 0 0 0 0
a: 0 0 1 0 0 0 1 0 0 0
a: 0 0 1 0 1 ¢ 0 1 1 0
a: 0 0 1 1 X 0 0 1 0 0
b: 0 1 1 0 0 1 0 0 0 0
b 0 1 1 1] 1 0 ¢ 1 1 0
b: 0 1 1 1 X ¢ 0 1 0 0
c: 1 0 1 0 0 0 0 0 0 1
c: 1 0 1 0 1 0 0 1 1 0
¢ 1 0 1 1 X 0 0 1 0 0

State Table for Mealy Model: Solution using Method-2

TR
CR

00000 060000
00100 01000
00101 00110
00110 00100
00111 00100
01100 10000
7 —| 01101 00110
01110 00100
R 01111 00100
10100 00001
P— 10101 00110
10110 00100
10111 00100
11600 XXXXX
11111 XXXXX
‘—CL
B
( o »
0 C1<<7
457
0 CK
Clock

Realization using ROM: Solution using Method-1
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The most popular sequential logic circuit design uses an external clock for triggering and the state changes
occur synchronously with clock. In Moore model, such design output is derived directly from state outputs,
also called secondary outputs. In Mealy model, output is generated from primary or actual input to circuits
and secondary inputs. Word or timing description of a problem is first converted to state transition diagram
or ASM chart followed by state synthesis table. In one implementation circuit can be realized using any
type of flip-flop using flip-flop excitation table and excitation map. In other ROM and delay flip-flops
are used where ROM stores the next state information. State reduction techniques are used to remove
redundant states thereby can reduce the circuit complexity. Asynchronous system is not dependent on
any external clock thus operates at a higher speed. But the circuit reacts to any and every change in the
inputs and are prone to problems like racing, oscillations and different types of hazards. Design of such
circuits are much more difficult compared to synchronous drcuit and are attempted only for time critical
applications where a very fast response to any input change is required.

ASM chart 2 flow chart describing state
transition with timing information
asynchronous  sequential  circuit not
synchronous with any external clock

critical race leads to two different outputs of
circuit depending on which feedback variable
changes earlier

dummy variable an additional variable
preventing simultaneous change of two state
variables in asynchronous sequential circuit
essential hazard a condition when following
an input change, one feedback variable tries to
change the output before the other part of the
circuit could respond to change in input.
excitation map relationship that gives design
equation for flip-flop inputs

incompletely specified table state table where
some of the next state or output or both remain
unspecified.

Mealy model where output depends both on
state variable and input

Moore model where output depends only on
state variables

non critical race leads to same output
irrespective of propagation delay in a race
condition

oscillation circuit moving between two
unstable states

primitive flow table that directly maps state
transition diagram in a state table where each
row has only one stable state.

racing a condition when more than one
feedback variables try to change its value
ROM Read Only Memory

state memory values of a sequential circuit
state tranmsition diagram depicts state
transition of a circuit pictorially
synchronous sequential circuit  works
synchronously with external clock trigger
state synthesis table state transition and flip-
flop input description that leads to synthesis of
sequential logic circuit
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. PROBLEMS '

11.1

11.2

11.3

11.4

I1.5

1t1.6

Draw state transition diagram of synchronous
sequential logic circuit using Mealy model
that detects three consecutive zeros from an
input data stream, .X and signals detection by
making output, Y= 1.

Convert Mealy model of Problem 11.1 to
Moore model using conversion rules.

Using Moore model draw state transition
diagram of a serial parity checker circuit. If
the number of *1’s received at input X is even,
parity checker output, ¥'= 0. If odd number of
‘1’s are received at X then Y= 1.

Convert Moorem model of Problem 11.3 to a
Mealy model.

Using Moore model draw state transition
diagram of the circuit that generales a single
pulse of width equal to clock period when
enabled by E = 1. The circuit is reset by E=0
at any stage.

Draw state transition diagram of sequence
detector circuit that detects ‘1101° from input
data stream using both Mealy and Moore
model.

11.8

For Mealy model state transition diagram
of sequence detector problem shown in Fig.
11.2b use following state assignment and get
corresponding state synthesis table for JK flip-
flop based solution.
aB=0,4=0
¢ B=1,4=1
For Mealy model state transition diagram
of sequence detector Problem shown in Fig.
11.2b use following state assignment and get
corresponding state synthesis table for JK flip-
flop based solution.
a B=04=0
c.B=1,4=1

b: B=0,4=1

b: B=0,4=1
d B=14=90

11.9

11.10

11.11

I1.12

11.13

11.14

11.15

11.16

11.17

11.18

11.19

Give design equations for Problem 11.7.
Compare this with solution given in Section
11.4.

Give design equations for Problem 11.8.
Compare this with solution given in Section
11.4.

Give design equations for Problem 11.1 for
implementation with £} flip-flops.

Implement circuit diagram for Problem 11.1
using JK flip-flops.

How many memory eclements are necessary
for Mealy and Moore models in sequence
detector Problem 11.6.

Implement (a} parity checker circuit of
Problem 11.3 and (b) single pulse generator
circuit of Problem 11.5.

Show how using an additional column in
ROM the combinatorial circuit of Fig. 11.7 for
sequence detector problem can be dispensed
with.

Implement ROM based solution for Problem
11.6 where output is directly derived from
ROM.

In vending machine problem of Section 11.6
we want to add an additional function. We give
the customer an option to get back the coins
he has deposited if he finds himself short of
mongy or changes his mind midway. However,
this function does not work if the cost of the
product is reached. A push button switch, P is
used for this which when pressed generates P
= 1 and returns the coin deposited thus far by
activating C = 1. Show what changes in ASM
chart of Fig. 11.10 are necessary for this,
Draw ASM chart for Problem 11.5 and
implement the circuit using ROM.

Find the minimum number of states necessary
to represent following state table both by row
elimination and implication table method.
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Present State Next State Present Output
X=0 X=1 X=0 X=1
a f d 1] 1
b c f 1 i
c f b t 1
d e g 1 1
e a d 1 1
f g b 0 1
£ a d 0 1
11.20 Reduce following state table using implication

table method.

Present State Next State Present Output
' X=0 X=1 X=0 X=t
a h c 1 0
b - d g o
c h b 00
d. f h ) )
e c f ] 1
f S g 0 0
£ £ ¢ 1 0
h a ¢ 1 0

11.24

11.22

11.23

11.24

11.25

11.26

State the condition of stability in asynchronous
sequential logic.

Omne of the two inputs of a two input NOR
gate is fed back from the output. Write its state
stable and encircle stable states, if any.

For state table in Problem 11.30 show the
stable states, if any.

For state table in Problem 11.30 show how the
circuit behaves when xy = 11 and 4 changes as
1-0.

There are three inputs 4, B and C 1o an
asynchronous sequential logic system. If ABC
= [1] at any given time write the allowed
combination of inputs that can follow.

Draw state table of adjacent asynchronous
sequential logic circuit.

Y

11.27

11.28

11.29

11.30

When does oscillation occur in an asynchro-
nous sequential logic circuit?

How can essential hazard be prevented in
asynchronous sequential logic circuit?

There are two inputs 4, B and three feedback
outputs x, y and z of an asynchronous sequen-
tial togic system. If xyz4B = 10011 gives a
stable state and input A8 changes as 1110,
which of the following next state does not
give racing problem — 10110, 00110, 11010,
00010 and 111107

Find out potential problems in following state

table where A is input and x and y are output
feedbacks.

xy
AN 00 01 11 10
olo1|oo|10]10
tfeotor| 1ot

11.32

11.33

11.34

The T flip-flop has a single input 7, and single
output . For T'= 0, ouiput does not change.
For T= 1, output complements and remains at
that value as long as T=1. Draw its (a) state
diagram and (b) primitive flow table.

For Problem 11.31, use state reduction
technique to check if a reduced flow table is
possible.

Find design equations for Problem 11.31 after
appropriate state assignment.

Design a parity generator using asynchronous
sequential logic that gives output = 1 when it
receives odd number of pulses and output = 0
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if the number of pulses received is even. 11.37 We require a circuit which will suppress

(Hint: State transition diagram is same as narrow positive spikes on a signal line. The

Problem 11.31.) output of the circuit will be an inverted and
11.35 Draw state transition diagram of a moduto-3 slightly delayed version of the input minus the

counter for asynchronous sequential logic. The spikes. Construct the primitive flow table and

counter counts number of pulses appearing at show one state assignment scheme.

its input and generates output = |1 when three  11.38 Get design equations for Problem 11.37 and

pulses arrive else output = 0, implement the circuit. Verify how it does
11.36 Design modulo-3 counter stated in Problem noise suppression.

11.35 using asynchronous sequential logic.

. LABORATORY EXPERIMENT '

M%The aimnfthts i%:ﬁ;ﬁment is to Theory: The Moore Model generates final
implement a Moore Model and a Mealy Model output solely from flip-flop states while
for a sequence detector that detects a sequence Mealy Model can use input data too. Moore
"110’ from the incoming data stream. . Model, usually takes more hardware but in
1 T '3<[—L13—Y

A B _

U |

il bpddy, B

PPy

J

[
rk

ot
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Mealy Model, unwanted fluctuations in input
get directly reflected at the output. Section
11.4 of the book explains the design of these
models and reproduces the circuits to be
implemented.

Apparatus: +5V DC Power supply, Malti-
meter, Bread Board, Clock Generator, and Os-
cilloscope.

Work element: Connect the circuit as

1. - State transition diagram is a visual description

of how state of sequential circuit- change m.

each clock eyele:

2. In Moore machine, output is assoenated mth .

shown. You can manually give input, or a
counter can be used to generate a repetitive
sequence that contains 110", Check the output.
For manual input, check the performance for
both the Models. when, debounce switch is
.used and -when it is not used. Leam to debug
the circuit by verifying outputs of individual
building blocks say flip-flops and logic gates
for different inputs.

a state and written inside a circle. In Mealy L

along the arrow-headed transition path. -

3. Excitation map is Kamaugh maprepresen-. _
tation of flip-flop inputs in terms of present -
state and present circuit input that gives de- -

sign equations for flip-flops.

4. Moore modelnormally require more hardware.

as it needs more number of states to describe
a problem.

5.
Clock Input Moore Mealy
Cycle output output
1 L 0 0
2 1 0 it
3 0 0 0
4 } 0 0
5 1 0 0
6 0 0 1
7 1 1 0
8 0 0 0 .
9 1 0 0
10 1 0 0

o ef. ﬂxp-ﬁops' are’ not used. in ROM based
" ‘implementation. Flip-flops. -used there only

...~ for.the purpose of delaymg mformatxon by
oneclockpemod

7. The cutput is same Tor Moore ‘and Mealy

o -modﬂlsandsmneasMealyoutputon 5.

8. ASM chart is flow chart type representation
of seqmznnai loglc citcuit w1tb bm time
indexation.

9. Implication table is a mapping of state
variables: that 1dentlﬁes state redundancy
easity. :

10. Partmcm tables partltlons state variables in

- groups “which consists of -equivalent state

variables:

11. By this, the redundant states can be removed.
This in tirn reduces hardware réquirement.

12. Output change is based on change in input
level.

13.. Not meore than one mput can change at a

14, Racmg occurs-when an input change tries to
change more than one feedback variables.
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15.

16.

Depending on which changes earkier the
cm:ult may stabd:ze n two different states of

satme staje it is ealled Noi-critical race.
This is the condition when following an input

change, one feedback variabie-tries to chapge o
the output before the other part of the circuit :

could respond to change in input.

This directly maps state teansition diagram: :
masmmblewhmeachmimsanlym ’

stable state.

17,

18.

State table where some of the next state or
output or both remain unspecified.

An additional variable, which is not required
as such but prevents simultaneous change of
two state vanables in asynchronous sequential

.. circuit;

16,

Asynchronous - circuit does not depend on

. clock trigger, hence faster. But there are

" several ‘practical constraints that makes
* - design'of such circuit very complex.
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D/A Conversion and
A/D Conversion

0

§S

Be able to do calculations related to variable resistor and binary ladder networks
Recall some of the sections of a typical D/A converter and calculate D/A resolution
Understand A/D conversion using the simuitaneous, counter, continuous, and dual-
slope methods

+ Discuss the accuracy and resolution of A/D converters

++e

Digital-to-analog {I)/A} and analog-to-digital (A/D) conversion form two very important aspects of digital
data processing. Digital-to-analog conversion involves translation of digital information into equivalent
analog information. As an example, the output of a digital system might be changed to analog form for the
purpose of driving a pen recorder. Similarly, an analog signal might be required for the servomotors which
drive the cursor arms of a plotter. In this respect, a D/A converter is sometimes considered a decoding
device.

The process of changing an analog signal to an equivalent digital signal is accomplished by the use of an
A/D converter. For example, an A/D converter is used to change the analog output signals from transducers
(measuring temperature, pressure, vibration, etc.} into equivalent digital signals. These signals would then be
in a form suitable for entry into a digital system. An A/D converter is often referred to as an encoding device
since it is used to encode signals for entry into a digital system,

Digital-to-analog conversion is a straightforward process and is considerably easier than A/D conversion.
In fact. a /A converter is usually an integral part of any A/D converter. For this reason, we consider the D/A
conversion process first.
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12.1°- VARIABLE, RESISTOR NETWORKS

The basic problem in converting a digital signal into an equivalent analog signal is to change the » digital
voltage levels into one equivalent analog voltage. This can be most easily accomplished by designing a
resistive network that will change each digital level into an equivalent binary weighted voltage (or current).

Binary Equivalent Weight

As an example of what is meant by binary equivalent weight, consider the truth table 2|22
for the 3-bit binary signal shown in Fig. 12.1. Suppose that we want to change the eight ol ol o
possible digital signals in this figure into equivalent analog voltages. The smallest ol ol
number represented is 000, let us make this equal to 0 V. The largest number is 111: let 0l17]0
us make this equal to +7 V. This then establishes the range of the analog signal to be (1) (]) (l)
developed. (There is nothing special about the voltage levels chosen; they were simply 1ol
selected for convenience.) i { (1)

Now, notice that between 000 and 111 there are seven discrete levels to be defined.
Therefore, it will be convenient to divide the analog signal into seven levels. The
smallest incremental change in the digital signal is represented by the least-significant
bit (LSB), 2°. Thus we would like to have this bit cause a change in the analog output that is equal to one-
seventh of the full-scale analog output voltage. The resistive divider will then be designed such that a 1 in the

2° position will cause +7 x % =+1 V at the output.

Since 2' =2and 2°=1, it can be clearly seen that the 2! bit represents a number that is twice the size of the
2% bit. Therefore, a 1 in the 2! bit position must cause a change in the analog output voltage that is twice the
size of the LSB. The resistive divider must then be constructed such that a 1 in the 2! bit position will cause
a change of +7 x % = +2 V in the analog output voltage.

Similarly, 2 =4 =2 x 2! = 4 x 2% and thus the 22 bit must cause a change in the output voltage
equal to four times that of the LSB. The 27 bit must then cause an output voltage change of +7 x ; =+4 V.

The process can be continued, and it will be seen that each successive bit must have a value twice that of
the preceding bit. Thus the LSB is given a binary equivalent weight Of% or | partin 7. The next LSB is given
a weight of %, which is twice the LSB, or 2 parts in 7. The MSB (in the case of this 3-bit system) is given a

4
weight of 7, which is 4 times the LSB or 4 parts in 7. Notice that the sum of the weights must equal 1. Thus
1 2 4 7 .
7%7*7=7 = 1. In general, the binary equivalent weight assigned to the LSB is 1/(2" — 1), where » is the

number of bits. The remaining weights are found by multiplying by 2, 4, 8, and so on. Remember,

LSB weight = 2" -1

Find the binary equivalent weight of each bit in a 4-bit system.

Solution  The LSB has a weight of (2* ~ 1) = (16 — 1) = 1z, or | partin 15. The second LSB has a weight of 2 x
15 = 15~ The third LSB has a weight of 4 X = = -+, and the MSB has a weight of § x 35 = 15+ As a check, the sum
of the weights must equat 1. Thus % + % + % + % = % = 1. The binary equivalent weights for 3-bit and 4-bit systems

are sumimarized in Fig. 12.2.
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Bit | Weight Bit | Weight
2 7 2% | 115
2V o 2Y | 2115
2| a7 22| 405
23| 815

Sum| 7/7 Sum/| 15/15

(b)

Binary equivalent weights

Resistive Divider

What is now desired is a resistive divider that has three digital inputs and
one analog output as shown in Fig. 12.3a. Assume that the digital input
levelsare 0 =0V and 1 =+7 V. Now, for an input of 001, the output will
be +1 V. Similarly, an input of ¢10 will provide an output of +2 V and an
input of 100 will provide an output of +4 V. The digital input 011 is seen to
be a combination of the signals 001 and 010. If the +1 V from the 2° bit is

22

added to the +2 V from the 2! bit, the desired +3 V output for the
01! input is achieved. The other desired voltage levels are shown
in Fig. 12.3b; they, too, are additive combinations of voltages.

Thus the resistive divider must do two things in order to change
the digital input into an equivalent analog output voltage:

1. The 2° bit must be changed to +1 V, and 2' bit must be
changed to +2 V, and 22 bit must be changed to +4 V.

2. These three voltages representing the digital bits must be
summed together to form the analog output voltage.

A resistive divider that performs these functions is shown in
Fig. 12.4. Resistors Ry, R|, and R; form the divider network. Re-
sistance R; represents the load to which the divider is connected

21 — Resistive Analog
2 - dividef ou[put
2
2
()
Digital input | Analog output
0 0 0 +HV
0 01 +HV
01 0 +2V
011 +3V
1 00 +4V
1 01 +5V
1 10 +6V
1 1 1 +I1V

and is considered to be large enough that it does not load the divider network.

Assume that the digital input signal 001 is applied to this network.
Recalling that 0 = 0 V and I = +7 V, you can draw the equivalent
circuit shown in Fig. 12.5. Resistance R; is considered large and is
neglected. The analog output voltage V', can be most easily found by
use of Millman’s theorem, which states that the voltage appearing
at any node in a resistive network is equal to the summation of the
currents entering the node (found by assuming that the node voltage
is zero} divided by the summation of the conductances connected to
the node. In equation form, Millman’s theorem is

_Vi/R +VyIRy + V3/Ry + -

VR +1/Ry + /Ry + -

"l
=
f=]
1|
=
[=]
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Applying Millman’s theorem to Fig. 12.5, we obtain

_ Vo/Ry + Vi/(Ry12) + V3 /(Ry 14)
A7 T URy + 1Ry 12) + 1/(Ry 14)

= 7/ Ry U
/Ry +2/Ry +4/Ry 7

Drawing the equivalent circuits for the other 7-input combinations and applying Millman’s theorem will
lead to the table of voltages shown in Fig. 12.3 (see Prob. 12.3).

To summarize, a resistive divider can be built to change a digital voltage into an equivalent analog voltage.
The following criteria can be applied to this divider:

1. There must be one input resistor for each digital bit.

2. Beginning with the LSB, each following resistor value is one-half the size of the previous resistor.

3. The full-scale output voltage is equal to the positive voliage of the digital input signal. (The divider
would work equally well with input voltages of 0 and —V.)

4. The LSB has a weight of /(2" - 1}, where # is the number of input bits,

5. The change in output voltage due to a change in the LSB is equal to /(2" — 1), where ¥ is the digital
input voltage level.

6. The output voltage ¥, can be found for any digital input signal by using the following modified form
of Millman’s theorem:

V22t e 2t e w2t w20
2" -1
where Vy, V1, V3, V3, . . ., ¥, are the digital input voltage levels (0 or ¥) and » is the number of input bits.

v, (12.1)

For a 5-bit resistive divider, determine the following: (a) the weight assigned to the LSB; (b)
the weight assigned to the sccond and third LSB; (c) the change in output voitage due to a
change in the LSB, the second LSB, and the third LSB; (d) the output voltage for a digital
input of 10101. Assume 0=0Vand I =+10 V.

Solution

(a) The LSB weight is 1/(2° — 1) = 1/31. o

(b) The second LSB weight is 2/31, and the third LSB weight is 4/31.

(c) The LSB causes a change in the ouiput voltage of 10/31 V. The second LSB causes an output voltage change of
20/31 V, and the third LSB causes an output voltage change of 40/31 V.

(d) The output voltage for a digital input of 10101 is

_10x2° +0x 2! +10x22 +0x 2% +10%2*

v,
4 251
=10{1+4+16)=&=+6.77V
32-1 31

This resistive divider has two serious drawbacks. The first is the fact that each resistor in the network has
a different value. Since these dividers are usuaily constructed by using precision resistors, the added expense
becomes unattractive. Moreover, the resistor used for the MSB is required to handle a much greater current
than that used for the LSB resistor. For example, in a 10-bit system, the current through the MSB resistor is
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approximately 500 times as large as the current through the LSB resistor (see Prob. 12.5). For these reasons,

a second type of resistive network, called a ladder, has been developed.

1. What is the LSB weight of a 6-bit resistive ladder? _
2. What is the value of V', in Example 12.2 if the MSB is 0?

. 12.2 BINARY LADDERS '

The binary ladder is a resistive network whose
output voltage is a properly weighted sum of the
digital inputs. Such a ladder, designed for 4 bits,
is shown in Fig. 12.6. It is construcied of resistors
that have only two values and thus overcomes one
of the objections to the resistive divider previously
discussed. The left end of the ladder is terminated
in a resistance of 2R, and we shall assume for the
moment that the right end of the ladder (the output)
is open-circuited,

(@9 hig. 126 ") Binary ladder

Letus now examine the resistive properties of the network, assuming that all the digital inputs are at ground.
Beginning at node 4, the total resistance looking into the terminating resistor is 2R. The total resistance
looking out toward the 2° input is also 2R. These two resistors can be combined to form an equivalent resistor
of value R as shown in Fig, 12.7.
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Now, moving to node B, we see that the total resistance looking into the branch toward node 4 is 28, as is
the total resistance looking out toward the 2! input. These resistors can be combined to simplify the network
as shown in Fig. 12.7.

From Fig. 12.7, it can be seen that the total resistance looking from node C down the branch toward node B
or out the branch toward the 22 input is stilt 2R. The circuit in Fig. 12.7 can then be reduced to the equivalent
as shown in Fig. 12.7.

From this equivalent circuit, it is clear that the resistance looking back toward node C is 2R, as is the
resistance looking out toward the 23 input.

From the preceding discussion, we can conclude that the total resistance looking from any node back
toward the terminating resistor or out toward the digital input is 2R. Notice that this is true regardless of
whether the digital inputs are at ground or +¥. The justification for this statement is the fact that the internal
impedance of an ideal voltage source is 0 £2, and we are assuming that the digital inputs are ideal voltage
sources.

We can use the resistance characteristics of the ladder to determine the output voltages for the various
digital inputs. First, assume that the digital input signal is 1000. With this input signal, the binary ladder can
be drawn as shown in Fig. 12.8a. Since there are no voltage sources to the left of node D, the entire network to
the left of this node can be replaced by a resistance of 2R to form the equivalent circuit shown in Fig. 12.8b.
From this equivalent circuit, it can be easily seen that the output voltage is

(2R _+V
2R+2R 2
Thus a 1 in the MSB position will provide an output voltage of +¥7/2.

VA:V

+V +V

2R
2R
v
D A

&

{(a) Binary ladder with a digital input of 1000, (b) Equivalent circuit for a
digital input of 1000

To determine the output voltage due to the second MSB, assume a digital input signal of 0100. This can
be represented by the circuit shown in Fig. 12.9a. Since there are no voltage sources to the left of node C,
the entire network to the left of this node can be replaced by a resistance of 2R, as shown in Fig. 12.9b. Let
us now replace the network to the left of node C with its Thévenin equivalent by cutting the circuit on the
jagged line shown in Fig. 12.9b. The Thévenin equivalent is clearly a resistance R in series with a veltage
source +¥72. The final equivalent circuit with the Thévenin equivalent included is shown in Fig. 12.9¢. From

this circuit, the output voltage is clearly
_tv 2R +V

X =
2 R+R+2R 4
Thus the second MSB provides an output voltage of +17/4,

Va
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(b) (c)

(a) Binary ladder with a digital input of 0100, (b) Partially reduced
equivalent circuit, (c) Final equivalent circuit using Thévenin’s theorem

This process can be continued, and it can be shown that the third MSB provides an output voltage of +F/&,
the fourth MSB provides an output voltage of +#716, and so on. The output voltages for the binary ladder

are summarized in Fig. 12.10; notice that each digital input is transformed into a properly weighted binary
output voltage.

') What are the output voltages caused by each bit in a 5-bit ladder if the input levels are 0 = 0
Vand | =+10V?

Solution The output voltages can be easily calculated by ﬁsing : : .Bit Binary | OQutput
Fig. 12.10. They are " position | weight | voltage
. vV  +10 ' MSB | 12 vi2
tMSB V, =—=—— =
s Masg=m =y 2MSB | 14 | w4

v 410 3dMSB 1/86 V8
Y _#0 : : ... -4hMSB | 116 ‘| w16
Second MSB Va= =T o= 425V 7 Shwmss | 133 { v

‘6thMSB | 1/64 | Viea

ThirdMSB,VA=—g-=ﬂ9=+l.25V ~ o THMSB | V128 | W28

V 410 . : S N N

Fourth MSB VA=T6—=F=+O.625V NhMSB | 12 VR
. v+l B @LETITT) sinary tadder
LSB = fifth MSB v,.,=§5=-§-2-=+0.3125v ~ B ~ " output voltages

Since this ladder is composed of linear resistors, it is a linear network and the principle of superposition
can be used. This means that the total output voltage due to a combination of input digital levels can be
found by simply taking the sum of the output levels caused by each digital input individually.
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In equation form, the output voltage is given by
Vi=—+—+—+—+--+— (12.2)

where #» is the total number of bits at the input.

This equation can be stmplified somewhat by factoring and collecting terms. The output voltage can then
be given in the form
2t v 2t e 22 4 20 ey, 27!
= o
where ¥y, ¥}, V3, ..., ¥, are the digital input voltage levels. Equation (12.3) can be used to find the output
voltage from the ladder for any digital input signal.

Vi

(12.3)

(@P Example 12.4 ) Find the output voltage from a 5-bit ladder that has a digital input of 11010. Assume that
0=0VandL=+10V.

Solution . ByEq.(123)y. .~ -~ Lo
: S V Sox2" 2 10x 2 w022 +10x 22 +10x2*

B2 48+16) _10%26 _

32 - 32

This solution canbe _chgpkpgfl?y adding the individual bit contributions calculated in Example 12.3.

+8125V

Notice that Eq. (12.3) is very similar to Eq. {(12.1), which was developed for the resistive divider. They are,
in fact, identical with the exception of the denominators. This is a subtle but very important difference. Recall
that the full-scale voltage for the resistive divider is equal to the voltage level of the digital input 1. On the
other hand, examination of Eq. (12.2) reveals that the full-scale voltage for the ladder is given by

VA=V(]_+_1.+1+L+...+.1_)
2 4 8 16 2"

The terms inside the brackets form a geometric series whose sum approaches 1, given a sufficient number
of terms. However, it never quite reaches 1. Therefore, the full-scale output voltage of the ladder approaches
¥ in the limit, but never quite reaches it.

) What is the full-scale output voltage of the 5-bit ladder in Example 12.4?

Solution  'The full-scale voltage is simply the sum of the individual bit voltages. Thus
V=5+25+125+0.625+03125 =+9.6875 V

To keep the ladder in perfect balance and to maintain symmetry, the output of the ladder should be
terminated in a resistance of 2R. This will result in a lowering of the output voltage, but if the 2R load is
maintained constant, the output voltages will still be a properly weighted sum of the binary input bits. If the
load is varied, the output voltage will not be a properly weighted sum, and care must be exercised to ensure
that the load resistance is constant.

Terminating the output of the ladder with a load of 2R also ensures that the input resistance to the ladder
seen by each of the digital voltage sources is constant. With the ladder balanced in this manner, the resistance
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looking into any branch from any node has a value of 2R. Thus the input resistance seen by any input digital
source is 3R. This is a definite advantage over the resistive divider, since the digital voltage sources can now
all be designed for the same load.

@9 Example 12.6 ) Suppose that the value of R for the 5-bit ladder described in Example 12.3 is 1000 Q.
Determine the current that each input digital voltage source must be capable of supplying.
Also determine the full-scale output voltage, assuming that the ladder is terminated with a

load resistance of 2000 Q.
" Solution The input resistance into the Tadder seen by cach of
thedxgmisnm:esas 3R = 3000 2. Thus, for a voltage level of +10 . Ladder 'Ihévenm vivalent
'V, each source mustbe capable of supplying 7= 10/(3 x 103 =3 - 'i'“_*'*_-'-'f‘*-"--ﬁ*---i o

the ladder. The resistance jooking back into the Isdderis clearly R -
= 1000 L2, Thus the Théverin equivalent is as shown inFig. 12.11. .
From this figare, the output voltageis =~~~ ¢

1 mA (without the 2R load resistor, the resistance looking into the. 5 PR ngd
ﬁSB terminal is actually 4R). The no-load output voltage of the ! “MW i :
* ladder’ has already been determined-in Example 12.5: This open- -+ | %k ra
circuit output voltage along with the open-circuit output resistance i ' E
-canbeusedtofsnma'fhevéﬂin‘equiva}mtgimnitforﬂmﬁutpmof-' L b
I s
3

T T
Vg AOEBTSX S = A 6A5EIV
__ VA 82R+R 5458 Vi

The operational amplifier (OA) shown in Fig. 12.12a is connected as a unity-gain noninverting amplifier.
It has a very high input impedance, and the output voltage is equal to the input voltage. It is thus a good buffer
amplifier for connection to the output of a resistive ladder. It will not load down the ladder and thus will not
disturb the ladder output voltage ¥V,; ¥, will then appear at the output of the OA.

20 2n—1 "

+15
Vdc

e

2R 2R 2R

% = Vde

I
n

+15
Ydc

15 Va
= Vde -L
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Connecting an OA with a feedback resistor R as shown in Fig. 12.12b resuits in an amplifier that acts as
an inverting current-to-voltage amplifier, That is, the output voltage ¥, is equal to the negative of the input
current / multiplied by R. The input impedance to this amplifier is essentially 0 Q: thus, when it is connected
to an R-2R ladder, the connecting point is virtually at ground potential. In this configuration, the R-2R ladder
will produce a current output / that is a binary weighted sum of the input digital levels. For instance, the MSB
produces a current of F/2R. The second MSB produces a current of V74V, and so on. But the QA multiplies
these currents by —R, and thus ¥, is

—_ + e | =
2R 4R
This is exactly the same expression given in Eqs. (12.2) and (12.3) except for the sign. Thus
the D/A converter in Fig. 12.12a and b will provide the same output voltage ¥, except for sign. In
Fig. 12.12a, the R-2R ladder and OA are said to operale in a voltage mode, while the connection in Fig. 12.12b
is said to operate in a current mode.

VA=(—R)(L+V J_ Vv Vv

3. Ifthe ladder in Example 12.4 is increased to 6 bits, what is the output voltage due to the sixth
bit alone? e , ol
4. If the ladder in Example 12.4 is increased to 6 bits, what is its full-scale output voltage?

12.3 . D/A CONVERTERS

Either the resistive divider or the ladder can be used as the basis for a digital-to-analog (D/A) converter, It is
in the resistive network that the actual translation from a digital signal to an analog voltage takes place. There
is, however, the need for additional circuitry to complete the design of the D/A converter.

As an integral part of the D/A converter there must be a register that can be used to store the digital
information. This register could be any one of the many types discussed in previous chapters. The simplest
register is formed by use of RS flip-flops, with one flip-flop per bit. There must also be level amplifiers
between the register and the resistive network to ensure that the digital signals presented to the network are all
of the same level and are constant. Finally, there must be some form of gating on the input of the register such
that the flip-flops can be set with the proper infomation from the digital system. A complete D/A converter in
block-diagram form is shown in Fig. 12.13a.

Let us expand on the block diagram shown in this Fig. 12.13a by drawing the complete schematic for a
4-bit D/A converter as shown in Fig. 12.13b. You will recognize that the resistor network used is of the ladder
type.

The level amplifiers each have two inputs: one input is the +10 V from the precision voltage source, and
the other is from a flip-flop. The amplifiers work in such a way that when the input from a flip-flop is high,
the output of the amplifier is at +10 V. When the input from the flip-flop is low, the output is § V.

The four flip-flops form the register necessary for storing the digital information. The flip-flop on the right
represents the MSB, and the flip-flop on the left represents the LSB. Each flip-flop is a simple RS latch and
requires a positive level at the R or § input to reset or set it. The gating scheme for entering information into
the register is straightforward and should be easy to understand. With this particular gating scheme, the flip-
flops need not be reset (or set) each time new information is entered. When the READ IN line goes high, only
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Digital input data
A

e ™

A
.. Input gates
|
N-bit register
|----- N lines--- -
Izvel'ampliﬁers _
————— N lineg-----
Resistive divider | V4
(a)
Digital input
20 2 2 2 2 2 2B 2
[ READIN
’ I T T * T T *r— (strobe)
kJ _ puise
SO S O § 0 SQ
RD RO RO RQ
Precision
- voltage |
i
Level
amplifier
2R

(@9 Fig. 12.13 ) 4-bit D/A converter

one of the two gate outputs connected to each flip-flop is high, and the flip-flop is set or reset accordingly.
Thus data are entered into the register each time the READ IN (strobe) pulse occurs. D flip-flops could be
used in place of the RS flip-flops.
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Quite often it is necessary to decode more than one signal-—for example, the X and Y coordinates for a
plotting board. In this event, there are two ways in which to decode the signals.

The first and most obvious method is simply to use one D/A converter for each signal. This method, shown
in Fig. 12.14a, has the advantage that each signal to be decoded is held in its register and the analog output
voltage is then held fixed. The digital input lines are connected in parallel to each convertet. The proper
converter is then selected for decoding by the select lines.

Multiple Signals

Digital input lines

—
D/A converter |1 Vat)
y Analog
" D/A converter 42 [ gutputs
—
D/A converter Vin J
(a)
Sample and bold
amplifiers

Digital input li [
igital input lines Miiplex Vo
T e Vi

-
N
b
~N
w

(b}

Decoding a number of signals: (a) Channel selection method,
(b) Multiplex method

The second method involves the use of only one D/A converter and switching its output. This is called
multiplexing, and such a system is shown in Fig. 12.14b. The disadvantage here is that the analog output
signal must be held between sampling periods, and the outputs must therefore be equipped with sample-and-
hold amplifiers.

Sample and Hold Circuit

An OA connected as in Fig. 12.15a is a unity-gain noninverting voltage amplifier—that is, ¥, = V;. Two such
OAs are used with a capacitor in Fig. 12.15b to form a sample-and-hold amplifier. When the switch is closed,
the capacitor charges to the D/A converter output voltage. When the switch is opened, the capacitor holds the
voltage level until the next sampling time. The operational amplifier provides a large input impedance so as
not to discharge the capacitor appreciably and at the same time offers gain to drive external circuits.
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|
p — V=V, 14
V. A

|l|}—)

(a) (b)

When the D/A converter is used in conjunction with a multiplexer, the maximum rate at which the converter
can operate must be considered. Each time data is shifted into the register, transients appear at the output of
the converter. This is due mainly to the fact that each flip-flop has different rise and fall times. Thus a settling
time must be allowed between the time data is shifted into the register and the time the analog voltage is read
out. This settling time is the main factor in determining the maximum rate of multiplexing the output, The
worst case is when all bits change (e.g., from 1000 to 0111).

Naturally, the capacitors on the sample-and-hold amplifiers are not capable of holding a voltage indefinitely;
therefore, the sampling rate must be sufficient to ensure that these voltages do not decay appreciably between
samples. The sampling rate is a function of the capacitors as well as the frequency of the analog signal which
is expected at the output of the converter.

At this point, you might be curious to know just how fast a signal must be sampled in order to preserve its
integrity. Common sense leads to the conclusion that the more often the signal is sampled, the less the sample
degrades between samples. On the other hand, if too few samples are taken, the signal degrades too much (the
sample-and-hold capacitors discharge too much), and the signal information is lost. We would like to reduce
the sampling rate to the minimum necessary to extract all the necessary information from the signal. The
solution to this problem involves more than we have time for here, but the results are easy enough to apply.

First, if the signal in question is sinusoidal, it is necessary to sample at only fwice the signal frequency.
For instance if the signal is a 5-kHz sine wave, it must be sampled at a rate greater than or equal to 10 kHz.

In other words, a smple must be taken every ﬁ s = 100 ps. What if the waveform is not sinusoidal? Any
waveform that is périodic can be represented by a summation of sine and cosine terms, with each succeeding
term having a higher frequency. In this case, it will be necessary to sample at a rate equal to twice the highest
frequency of interest.

D/A Converter Testing

Two simple but important tests that can be performed to check the proper operation of the I)/A converter are
the steady-state accuracy test and the monotonicity test,

The steady-state accuracy test involves setting a known digital number in the input register, measuring the
analog output with an accurate meter, and comparing with the theoretical value.

Checking for monotonicity means checking that the output voltage increases regularly as the input digital
signal increases. This can be accomplished by using a counter as the digttal input signal and observing the
analog output on an oscilloscope. For proper monotonicity, the output waveform should be a perfect staircase
waveform, as shown in Fig. 12.16. The steps on the staircase waveform must be equally spaced and of the
.exact same amplitude. Missing steps, steps of different amplitude, or steps in a downward fashion indicate
malfunctions,
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The monotonicity test does not check the system for accuracy, but if the system passes the test, it is
relatively certain that the converter error is less than 1 LSB. Converter accuracy and resolution are the
subjects of the next section.

A D/A converter can be regarded as a logic block having numerous digital inputs and a single analog
output as seen in Fig. 12.16b. 1t is interesting to compare this logic block with the potentiometer shown in
Fig. 12.16¢. The analog output voltage of the D/A converter is controlled by the digital input signals while
the analog output voltage of the potentiometer is controlled by mechanical rotation of the potentiometer
shaft. Considered in this fashion, it is easy to see how a ID/A converter could be used to generate a voltage
waveform {sawtooth, triangular, sinusoidal, etc.). It is, in effect, a digitally controlled voltage generator!

+V 4
| pac T Ré;.— -
—__ Vo . Vo
‘J—r_ .,_—E 1,__L

Suppose that in the course of a2 monotonicity check on the 4-bit converter in Fig. 12.13
the waveform shown in Fig. 12.17 is observed. What is the probable malfunction in the

converter?

ﬁ,lj Correct output
|« voltage staircase = —

-~ {

o

— Actual

| o Output
voltage

-1
L

0[0j0[0
0{oto[1
0j0[10
0f0[1)1
0[1j0]1
o[1j1]0
1]0[0{0
1{010] 1
1{0[1]0
1/0]1]1
1]1]0]0
i{1j0[1
1j1]1}0
111

7L (o1l

0
1
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]

9
10
11
12
i3
14
5

irregular output voltage for Example 12.7

Solution . There is obviously some malfunction since the actual output waveform is not continuously increasing as
it should be. The actual digital inputs are shown directly below the wave-form. Notice that the converter functions
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correctly up to count 3. At count 4, however, the output should be 4 units in amplitude. Instead, it drops to 0. It
remains 4 units below the correct levet until it reaches count 8. Then, from count 8 to 11, the output level is correct.
But again at count 12 the output falls 4 units below the correct level and remains there for the next four levels. If you
examine the waveform carefully, you will note that the output is 4 units below normal during the time when the 2% bit
is supposed to be high. This then suggests that the 22 bit is being dropped (i.¢., the 22 intpat to the ladder is not being
held high). This means that the 2*-level amplifier is malfunctioning or the 2% AND gate is not operating properly. In
any case, the monotonicity check has clearly shown that the second MSB is-not being used and that the converter is

not operating property.

Available D/A Converters

D/A converters, as well as sample-and-hold amplifiers, are readily obtainable commercial products. Each unit
is constructed in a single package; general-purpose economy units are available with 6-, 8-, 10-, and 12-bit
resolution, and high-resolution units with up to 16-bit resolution are available.

An inexpensive and very popular D/A converter is the DACO0808, an 8-bit D/A converter available from
National Semiconductor. Motorola manufactures an 8-bit D/A converter, the MC1508/1408. In F ig. 12.18, a
DACO808 is connected to provide a full-scale output voltage of ¥, =+10 Vdc when all 8 digital inputs are 1s
(high). If the 8 digital inputs are ail Os (low), the output voltage will be ¥, = 0 Vdc. Let’s look at this circuit
in detail.

First of all, two dc power-supply voltages are required for the DACO0808: Ve = +5 Vdc and Vg = —15
Vdc. The 0.1-uF capacitor is to prevent unwanted circuit oscillations, and to isolate any variations in ¥z
Pin2 is ground (GND), and pin 15 is also referenced to ground through a resistor.

Vee=+5 Vde

I Re=5kQ V¥ =+10Vde
A ———

Digital )
inputs

The output of the D/A converter on pin 4 has a very limited voltage range (+0.5 to —0.6 V). Rather, it is
designed to provide an output current f,. The minimum current (all digital inputs low) is 0.0 mA, and the
maximum current (all digital inputs high), is I;+. This reference current is established with the resistor at pin
14 and the reference voltage as

Iref = Vref/Rref ( 12-4)
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The D/A converter output current [, is given as

(Al A2 A3 AS]
L=l —+—+—++—
2 4 8 256
where A4, 45, A3, ... , Ag are the digital input levels (1 or 0).

The OA is connected as a current-to-voltage converter, and the output voltage is given as

V,=I1,%R
Substituting Eqgs. (12.4) and (12.5) into Eq. (12.6),
ot (A 22, B Y,
2 4 8 256

If we set the OA feedback resistor R equal to Ry, then
V(J =me(£+i2_+A_3+...+A_8)
2 4 8 256
Let’s try out Eq. (12.8). Suppose all digital inputs are 0s (all low). Then
Vﬂ :Vref x(9+9+9_+...+_9_)
2 4 B 256
= Vier x0=0.0 Vdc

Now, suppose all digital inputs are 1s (all high). Then
V0=Vref x(l+l+_l_+...+_l.k)
2 4 8 256

= (Vieg) % (%) = 0.996 X Vg

(12.5)

(12.6)

(12.7)

(12.8)

Since V¢ in Fig. 12.18 is +10 Vdc, the output voltage is seen to have a range between 0.0 and
+9.96 Vde. It doesn’t quite reach +10 Vdc, but this is characteristic of this type of circuit. This ¢ir-
cuit is essentially the current-mode operation discussed in the previous section and illustrated in
Fig. 12.12b.

all low. What is the output voltage V,,?

Solution

: 1 b -1 1
) " =
Yﬁ—lﬁx(2+4+32+128) 10x0.789 =789V

In Fig. 12.16, Alis high, A2 is high, 45 is high and 47 is high. The other digital inputs are

5. What is a monotonicity test?

6. What would be the full-scale output voltage in Fig. 12.18 if Vs were changed to +5 Vde?
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. 12.4 D/A ACCURACY AND RESOLUTION '

Two very important aspects of the D/A converter are the resolution and the accuracy of the conversion, There
is a definite distinction between the two, and you should clearly understand the differences.

The accuracy of the D/A converter is primarily a function of the accuracy of the precision resistors used
in the ladder and the precision of the reference voltage supply used. Accuracy is a measure of how close the
actual output voltage is to the theoretical output value.

For example, suppose that the theoretical output voltage for a particular input should be +10 V. An accuracy
of 10 percent means that the actual output voltage must be somewhere between +9 and +11 V. Similarly,
if the actual output voltage were somewhere between +9.9 and +10.1 V, this would imply an accuracy of 1
percent.

Resolution, on the other hand, defines the smallest increment in voltage that can be discerned. Resolution
is primarily a function of the number of bits in the digital input signal; that is, the smallest increment in output
voltage is determined by the LSB.

In a 4-bit system using a ladder, for example, the LSB has a weight of %. This means that the

. . . . . .
smallest increment in output voltage is 76 ©f the input voltage. To make the arithmetic easy, let
us assume that this 4-bit system has input voltage levels of +16 V. Since the LSB has a weight of

%, a change in the LSB results in a change of ! V in the output. Thus the output voltage changes
in steps (ot increments} of 1 V. The output voltage of this converter is then the staircase shown in
Fig. 12.16 and ranges from 0 to +15V in 1-V increments. This converter can be used to represent analog
voltages from 0 to +15 V, but it cannot resolve voltages into increments smailer than 1 V. If we desired to
produce +4.2 V using this converter, therefore, the actual output voltage would be +4.0 V. Similarly, if we
desired a voltage of +7.8 V, the actual output voltage would be +8.0 V. It is clear that this converter is not
capable of distinguishing voltages finer than 1 V, which is the resolution of the converter.

If we wanted to represent voltages to a finer resolution, we would have to use a converter with more
input bits. As an example, the LSB of a 10-bit converter has a weight of ﬁ. Thus the smallest incremental
change in the output of this converter is approximately ﬁ of the full-scale voltage. If this converter has a

+10-V full-scale output, the resolution is approximately +10 x Toi)T) = 10 mV, This converter is then capable
of representing voltages io within 10 mV.

What is the resolution of a 9-bit D/A converter which uses a ladder network? What is this
resolution expressed as a percent? If the full-scale output voltage of this converter is +5 V,
what is the resolution in volts?

Solution - The LSB in a 9-bit system has a weight of 31z - ‘Thus this converter has 4 Tesolution of 1 part in §12.

The resofution expressed as a percentage is 3iz X 100 percent = §.2 percent. The voltage resolution is obtained by
& 1

mmmm@mﬂmmww ﬁﬂl@caleout;anvnhage.flhusmemsohaﬁoninvoltsis 3i7 X3 = 10mV.

( : mm How many bits are required at the input of a convener if it is necessary to resolve voltages
to 5 mV and the ladder has +10 V full scale?

Solution The LSB of an [1-bit system has a resolution of 3045 - This would provide a resolution at the output of
1 .
S48 X T10 = +5mV.
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It is important to realize that resolution and accuracy in a system should be compatible. For example, in
the 4-bit system previously discussed, the resolution was found to be 1 V. Clearly it would be unjustifiable to
construct such a system to an accuracy of 0.1 percent. This would mean that the system would be accurate to
16 mV but would be capable of distinguishing only to the nearest 1 V.

Similarly, it would be wasteful to construct the 11-bit system described in Example 12.19 to an accuracy
of only 1 percent. This would mean that the output voltage would be accurate only to 100 mV, whereas it is
capable of distinguishing to the nearest 5 mV.

?

7. What is the resolution of the DAC0808 in Fig. 12.18?

. 12.5 A/D CONVERTER—SIMULTANEOUS CONVERSION '

The process of converting an analog veltage into an equivalent digital signal is known as analog-to-digital
(A/D) conversion. This operation is somewhat more complicated than the converse operation of D/A
conversion. A number of different methods have been developed, the simplest of which is probably the
simultaneous method. This is also known as 4/D converter, flash type, the reason for which will be clear
shortly.

The simultaneous method of A/D conversion is based on the use of a number of comparator circuits. One
such system using three comparator circuits is shown in Fig. 12.19 below. The analog signal to be digitized
serves as one of the inputs to each comparator. The second input is a standard reference voltage. The refer-
ence voltages used are + /4, +V/2, and +3V/4. The system is then capable of accepting an analog input volt-
age between 0 and +7V.

If the analog input signal exceeds the reference voltage to any comparator, that comparator turns on. {Let’s
assume that this means that the output of the comparator goes high.) Now, if all the comparators are off, the
analog input signal must be between ¢ and +¥74. If C| is high (comparater € is on) and C; and C; are tow,
the input must be between +¥74 and +¥72 V. If C; and C; are high while C; is low, the input must be between
+V72 and +3¥/4. Finally, if all comparator outputs are high, the input signal must be between +3V/4 and +V,
The comparator output levels for the various ranges of input voltages are summarized in Fig. 12.19.

Ref. voltage |Comp,

+3V7/4 o——
Analog | Input volta Comparator output
Voriiiaz% gl{:)ut"_ 2 | Comparator e G161 6G
¥ volts Rev. voltage |Comp; { outputs Oto+ V4 |Low | Low | Low

VY

+V/2 o— +Vi4 to+ ¥/2 |High|Low [Low

+¥/2 to + 3774 | High | High | Low
+3¥4to+V  |High|High |High

Rev. voltage |Comp; !
+¥i4  o—

(a) (b)

M

Simultaneous A/D conversion: (a) Logic diagram, (b) Comparator
outputs for input voltage ranges
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Examination of Fig. 12.19 reveals that there are four voltage ranges that can be detected by this converter.
Four ranges can be effectively discerned by two binary digits (bits). The three comparator outputs can then
be fed into a coding network to provide 2 bits which are equivalent to the input analog voltage. The bits of
the coding network can then be entered into a flip-flop repister for storage. The complete block diagram for
such an A/D converter is shown in Fig. 12.20.

Gy
+3174 [Comp, ,
) 12,
Anal —
inglftgc c, , R 0 Digital
voltage +¥2  [Comp, ;‘:“:’lgi Rggglsj 5 output
s ol
' R O
+y/4  |Comp,
o—

2-bit simultaneous A/D converter

In order to gain a clear understanding of the operation of the simultaneous A/D converter, let us investigate
the 3-bit converter shown in Fig. 12.21a. Notice that in order to convert the input signal to a digital signal
having 3 bits, it is necessary to have seven comparators (this allows a division of the input into eight ranges).
For the 2-bit converter, remember that three comparators were necessary for defining four ranges. In general,
it can be said that 2" — 1 comparators are required to convert to a digital signal that has n bits. Some of the
comparators have inverters at their outputs since both C and ( are needed for the encoding matrix.

The encoding matrix must accept seven input levels and encode them into a 3-bit binary number (having
eight possible states). Operation of the encoding matrix can be most easily understoed by examination of the
table of outputs in Fig. 12.22.

The 2 bit is easiest to determine since it must be high (the 2° flip-flop must be set) whenever Cj is high.

The 2! line must be high whenever C, is high and Cj is high, or whenever Cj is high. In equation form,
we can write 2! = C, Cy + Cy.

The logic equation for the 2° bit can be found in a similar manner; it is

2"=C\Cy+ C3Cq+ CsCo + C

The transfer of data from the encoding matrix into the register must be carried out in two steps. First, a
positive reset pulse must appear on the RESET line to reset all the flip-flops low. Then, a positive READ
pulse allows the proper READ gates to go high and thus transfer the digital information into the flip-flops.

Interestingly, a convenient application for a 9318 priority encoder is to use it to replace all the digital
logic as shown in Fig. 12.21b. Of course, the inputs Cy, Cy, ... , C7 must be TTL-compatible. In essence, the
output of the 9318 is a digital number that reflects the highest-order zero input; this corresponds to the lowest
reference voltage that still exceeds the input analog voltage.

The construction of a simultaneous A/D converter is quite straightforward and relatively easy to understand.
However, as the number of bits in the desired digital number increases, the number of comparators increases
very rapidly (2" — 1), and the problem soon becomes unmanageable. Even though this method is simple and
is capable of extremely fast conversion rates, here are preferable methods for digitizing numbers having more
than 3 or 4 bits. Because it is so fast, this type of converter is frequently called a flash converter.
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READ RESET
o Analog input voltage line J;'— J;'— line A

2
A [ C; 0—D_ 50 2
) +7V/8 Cq (—:6 | i RO

+3V/4 C,

+5V/8 = 2?
C 4
"——-;-_—D 4] D Cy , D._.S Ol
- Digital

output

&

+V/8

Comparators

READ | (g [e]
gates |

Qutput register -

Encoding matrix

(a)

o Analog input voltage

1| Digital
outputs

(b)

3-bit simultaneous A/D converter: (a) Logic diagram, (b) Using a 9318
priority encoder
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Binary

‘Input Comparator for level output
vollage | G | G I GGG G G2
Oto V/8 [Low jLow |Low |Low |Low |Low {Low [ 0 { 0 | O
V/8 to #/4 |High|Low [Low |Low |Low |Low [Low | 0 { 0 | 1
V74 to 3¥/8 |High |High|Low |Low jLow |[Low |Low | 0 F 1 | ©
3¥/8 to V72 |High [High [High [Low [Low |Low |Low | 0 [ 1 { 1
V72 to 5¥/8 |High |High |High|High|Low |Low [Low | 1 | 0| 0
5F/8 to 3174 |High |High{High |High|High|Low {Low | 1 | 0] 1
3¥/4 to 7¥/8 |High|High} High [ High | High |High|Low [ 1 | 1 | 0
TVigto ¥ High |High|High | High |High |High [High| 1| 1| 1

Logic table tor the converter in Fig. 12.19(a)

The Motorola MC1031% is an example of an 8-bit flash A/D converter. The input has 256 parallel
comparators connected to a precision voltage divider network. The comparator outputs are fed to latches
and then to an encoder network that captures the digital signal in Gray code. Gray code is used to ensure
that small input errors do not result in large digital signal errors. The Gray code is then decoded into straight
binary and presented to the outputs, which are tri-state TTL = compatible. The flash A/D converter is capable
of operation with a 25-MHz clock! It comes in a 24-pin DIP and requires two dc supply voltages—typically
+5 Vdc and -5 Vdc. Possible applications include radar signal processing, video displays, high-speed
instrumentation, and television broadcasting.

&

8. Why is a simultaneous A/D converter called a flash converter?
9. What is one application for a flash converter?

. 12.6 A/D CONVERTER-COUNTER METHOD '

A higher-resolution A/D converter using only one comparator could be constructed if a variable reference
voltage were available. This reference voltage could then be applied to the comparator, and when it became
equal to the input analog voltage, the conversion would be complete,

To construct such a converter, let us begin with a simple binary counter. The digital output signals will be
taken from this counter, and thus we want it to be an n-bit counter, where # is the desired number of bits. Now
let us connect the output of this counter to a standard binary ladder to form a simple D/A converter. If a clock
is now applied to the input of the counter, the output of the binary ladder is the familiar staircase waveform
shown in Fig. 12.16. This waveform is exactly the reference voltage signal we would like to have for the
comparator! With a minimum of gating and control circuitry, this simple D/A converter can be changed into
the desired A/D converter.

Figure 12.23 shows the block diagram for a counter-type A/D converter. The operation of the counter
is as follows. First, the counter is reset to all Os. Then, when a convert signal appears on the START line,
the gate opens and clock pulses are allowed to pass through to the input of the counter, The counter ad-
vances through its normal binary count sequence, and the staircase waveform is generated at the output of
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the ladder. This waveform is applied to one side START

of the comparator, and the analog input voltage l

is applied to the other side. When the reference

voltage equals (or exceeds) the input analog volt- Clock (izl::;onld Counter
age, the gate is closed, the counter stops, and the L A lines ——

conversion is complete. The number stored in the

counter is now the digital equivalent of the analog Level amplifiers
i oltage.
mput voliage A J_‘_r"r Ref, |~ Nlines--

Notice that this converter is composed of a Analog

D/A converter (the counter, level amplifiers, and input voltage Binary ladder
the binary ladder}, one comparator, a clock, and voltage L N lines
the gate and control circuitry. This can really

;‘Y—}

be considered as a closed-loop control system.
An error signal is generated at the output of the
comparator by taking the difference between
the analog input signal and the feedback signal
(staircase reference voltage). The error is detected by the control circuit, and the clock is allowed to advance
the counter. The counter advances in such a way as to reduce the error signal by increasing the feedback
voltage. When the error is reduced to zero, the feedback voltage is equal to the analog input signal, the control
circuitry stops the clock from advancing the counter, and the system comes to rest.

Digital output

Counter type A/D converter

The counter-type A/D converter provides a very good method for digitizing to a high resolution. This
method is much simpler than the simultaneous method for high resolution, but the conversion time required
is longer. Since the counter always begins at zero and counts through its normal binary sequence, as many as
2" counts may be necessary before conversion is complete. The average conversion time is, of course, 2%/2
or 2" counts.

The counter advances one count for each cycle of the clock, and the clock therefore determines the
conversion rate. Suppose, for example, that we have a 10-bit converter. It requires 1024 clock cycles for a
fuli-scale count. If we are using a 1-MHz clock, the counter advances | count every microsecond. Thus, to
count full scale requires 1024 < 107 = 1.024 ms. The converter reaches one-half full scale in half this time,
or in 0.512 ms. The time required to reach one-half full scale can be considered the average conversion time
for a large number of conversions,

(4 : I§ :E! m Suppose that the converter shown in Fig. 12.23 is an 8-bit converter driven by a 500-kHz
clock. Find (a) the maximum conversion time; (b) the average conversion time; (c) the
maximum converston rate,

Solution
(a) An 8-bit converter has a maxumun of 28 = 256 counts. With a 500-kHz clock, the counter advances at the rate
* of 1 count each 2 uis. To advance 256 counts requires 256 x 2 x 1076 = 512 x 1076 =512 ys.
- (b) The average conversion time is one-half the maximum conversion time. Thus it is 1/2 x 0.512 x 1073 = 0.256
ms. B '
{c) : The maximum comversion ras is determined by the longest conversion time, Since the converter has a maximum
conversion time of 0.512 ms, it is capable of making at least 1/(0.512 x 10~3) = 1953 conversions per second.

Figure 12.24 shows one method of implementing the control circuitry for the converter shown in Fig. 12.23.
The waveforms for one conversion are also shown. A conversion is initiated by the receipt of a START si gnal.



@ Digital Principles and Applications

JL

START 4 To RESET

counter
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S @Q to counter
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(a)
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Control flip-flop T 1

Clock _ 1 [ MM LI

Analog input
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Ref voliage 4‘_,_,——|_r‘
0V-

Comparator
output

(b)
Control of the A/D converter in Fig. 12.21

The positive edge of the START pulse is used to reset ali the flip-flops in the counter and to trigger the one-
shot. The output of the one-shot sets the control flip-flop, which makes the AND gate true and allows clock
pulses to advance the counter.

The delay between the RESET pulse to the ftip-flops and the beginning of the clock pulses (ensured by the
one-shot) is to ensure that all flip-flops are reset before counting begins. This is a definite attempt to avoid
any racing problems.

With the control flip-flop set, the counter advances through its normal count sequence until the staircase
voltage from the ladder is equal to the analog input voltage. At this time, the comparator output changes
state, generating a positive pulse which resets the control flip-flop. Thus the AND gate is closed and counting
ceases. The counter now holds a digital number which is equivalent to the analog input voltage. The converter
remains in this state until another conversion signal is received.

If a new start signal is generated immediately after each conversion is completed, the converter will
operate at its maximum rate. The converter could then be used to digitize a signal as shown in Fig. 12.25a
Notice that the conversion times in digitizing this signal are not constant but depend on the amplitude of the
input signal. The analog input signal can be reconstructed from the digital information by drawing straight
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Voltage

Voltage | Analog input voltage

\ . -
Ladder voltage Time Time
(2) (b)

m (a) Digitizing an analog voltage. (b) Reconstructed signal from the digital data.

lines from each digitized point to the next. Such a reconstruction is shown in Fig. 12.25b; it is, indeed, a
reasonable representation of the original input signal. In this case, it is important to note that the conversion
times are smaller than the transient time of the input waveform.

On the other hand, if the transient time of the input waveform approaches the conversion time, the
reconstructed output signal is not quite so accurate. Such a situation is shown in Fig. 12.26a and b. In this
case, the input waveform changes at a rate faster than the converter ts capable of recognizing. Thus the need
for reducing conversion time is apparent.

10. The A/D converter in Fig. 12.23 has & bits and is driven by a 2-MHz clock. What is the
maximum conversion time? _
11. What is the average conversion time for the canverter in question 10?

. 12.7 CONTINUOUS A/D CONVERSION '

An obvious method for speeding up the conversion of the signal as shown in Fig. 12.26 is to eliminate the
need for resetting the counter each time a conversion is made. If this were done. the counter would not begin
at zero each time, but instead would begin at the value of the last converted point. This means that the counter
would have to be capable of counting either up or down. This is no problem; we are already familiar with the
operation of up-down counters.

Voltage Voltage

Time Time

(a) (b)

(a) Digitizing an analog voltage, (b} Reconstructed signal from the digital data
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There is, however, the need for additional logic circuitry, since we must decide whether to count up or
down by examining the output of the comparator. An A/D converter which uses an up-down counter is shown
in Fig. 12.27 below. This method is known as continuous conversion, and thus the converter is called a con-
tinuous-type A/D converter. Since the converter’s digital output always tries to track the analog input to the
converter, this is also known as A/D converter-tracking type.

Clock
0s
— U Advance
} s Q P Countup] Up/down
o Count down counter
hY .
¢ --N lines-
Level
amplifiers
D
\ s o1 D_ LN lines -
s pl2ovn T Ladder
- lines -
Down
—————
up <omp Digital output
~ © Analog input
(a)

Clock [ M ML LIL

Ur [

Down *r—!_—
Up f-fiop. [ [ [
Down flip-flop 1 L1

(b)

Continuous A/D converter

The D/A portion of this converter is the same as those previously discussed, with the exception of the
counter. 1t is an up-down counter and has the up and down count control lines in addition to the advance line
at its input.

The output of the ladder is fed into a comparator which has two outputs instead of one as before. When
the analog voltage is more positive than the ladder output, the up output of the comparator is high. When the
analog voltage is more negative than the ladder output, the down output is high.
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If the up output of the comparator is high, the AND gate at the input of the up flip-flop is open, and the
first time the clock goes positive, the up flip-flop is set. If we assume for the moment that the dowr flip-flop is
reset, the AND gate which controls the counf-up line of the counter will be true and the counter will advance
one count. The counter can advance only one count since the output of the one-shot resets both the up and the
down flip-flops just after the clock goes low. This can then be considered as one count-up conversion cycle.

Notice that the AND gate which controls the count-up line has inputs of up and down . Similarly, the count-
down line AND gate has inputs of down and up . This could be considered an exclusive-OR arrangement and
ensures that the count-down and count-up lines cannot both be high at the same time.

As long as the up line out of the comparator is high, the converter continues to operate one conversion
cycle at a time. At the point where the ladder voltage becomes more positive than the analog input voltage,
the up line of the comparator goes low and the down line goes high. The converter then goes through a
count-down conversion cycle. At this point, the ladder voltage is within 1 LSB of the analog voltage, and the
converter oscillates about this point. This is not desirable since we want the converter to cease operation and
not jump around the finat value. The trick here is to adjust the comparator such that its outputs do not change
at the same time.

We can accomplish this by adjusting the comparator such that the #p output will not go high unless the
ladder voltage is more than 1/2 LSB below the analog voltage. Similarly, the down output will not go high
unless the ladder voltage is more than 1/2 LSB above the analog voltage. This is called centering on the LSB
and provides a digital output which is within 1/2 LSB.

A waveform typical of this type of converter is shown in Fig. 12.28. You can see that this converter is
capable of following input voltages that change at a much faster rate.

Voltage4 ~ Analog R Voltage Reconstructed waveform
input voltage :

," Ladder
" voltage

Time Time

Continuous A/D conversion

Quite often, additional circuitry is added to a continuous converter to ensure that it cannot
count off scale in either direction. For example, if the counter contained all 1s, it would be
undesirable to allow it to progress through a count-up cycle, since the next count would
advance it to all 0s. We would like to design the logic necessary to prevent this.

Solutmn ’I'he WO, lm'nt ponnis whlch must be.detected are all.1s and all Os in the counter. Suppose that we construct
. anAND gate having the ! sides of all the counter flip-flops as its inputs. The output of this gate will be true whenever
“the counter contains all 1s. If the gate is then counected to the reset side of the #p flip-flop, the counter will be unable
to count beyond all ls

Similarly, we might construct an AND gate in which the inputs are the 0 sides of all the counter flip-flops.
The output of this gate can be connected to the reset side of the down flip-flop, and the counter will then be
unable to count beyond all Os. The gates are shown in Fig. 12.29.
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e To reset side of To reset side of
4 up flip-flop down flip-flop
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Count-limiting gates for the converter in Fig. 12.25

@SHETED

12. How does the continuous-type A/D converter differ from the simple counter-type A/D
converter?

13. What advantage does the continuous-type A/D converter offer over the counter-type A/D
converter?

. 12.8 A/D TECHNIQUES '

There are a variety of other methods for digitizing analog signals—too many to discuss in detail, Nevertheless,
we shall take the time to examine two more techniques and the reasons for their importance.

G

Probably the most important single reason for investigating other methods of conversion is to determine
ways to reduce the conversion time. Recall that the simultaneous converter has a very fast conversion time.
The counter converter is simple logically but has a relatively long conversion time. The continuous converter
has a very fast conversion time once it is locked on the signal but loses this advantage when multiplexing
inputs.

Successive Approximation

If multiplexing is required, the successive-approximation converter is most useful. The block diagram for this
type of converter is shown in Fig. 12.30a. The converter operates by successively dividing the voltage ranges
in half. The counter is first reset to all 0s, and the MSB is then set. The MSB is then left in or taken out (by
resetting the MSB flip-flop) depending on the output of the comparator. Then the second MSB is set in, and
a comparison is made to determine whether to reset the second MSB flip-flop. The process is repeated down
to the LSB, and at this time the desired number is in the counter. Since the conversion involves operating on
one flip-flop at a time, beginning with the MSB, a ring counter may be used for flip-flop selection.

The successive-approximation method thus is the process of approximating the analog voltage by trying 1
bit at a time beginning with the MSB. The operation is shown in diagram form in Fig. 12.30b. It can be seen
from this diagram that each conversion takes the same time and requires one conversion cycle for each bit.
Thus the total conversion time is equal to the number of bits, », times the time required for one conversion
cycle. One conversion cycle nommally requires one cycle of the clock. As an example, a 10-bit converter
operating with a 1-MHz clock has a conversion time of 10 x 107°=10">= 10 us.

When dealing with conversion times this short, it is usually necessary to take into account the other delays
in the system (e.g. switching time of the multiplexer, settling time of the ladder network, comparator delay,
and settling time).
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All the logic blocks inside the dashed line in Fig. 12.30a, or some equivalent arrangement, are frequently
constructed on a single MSI chip; this chip is called a successive-approximation register (SAR). For example,
the Motorola MC6108 shown in Fig. 12.28¢ is an 8-bit microprocessor-compatible A/D converter that includes
an SAR, /A conversion capabilities, control logic, and buffered digital outputs, in a 28-pin DIP.

SAR
Pmmmmmm e T i
i [Control| | Ring counter i 11 = 11t
;| logic : 1110< T 1110
! [~V lines-4 / tor = Hg(l)
' ! 1100
! Counter ! \ 1011 =~ 1on
) g ™= 1010
! . i IUEO/
: - lines- ! S 1001 =~ 1001
| Level : Start __ 1000 ™ 1000
i amplifiers | ! 0000 0111 = 0111
_________ 01102 0110
- N lines-- S o0 <7 g}g(‘)
0100\ 001l =~ 0011
Ladder w0 0010
Ve . \0001 — 000]
Analog l»-Nhnes-*l = 0000
input U
Digital output
(@) {b)

3-state LSB | Digital
Controls {:> SAR | 8 buffers |:(XS) MSB} output

AT

DAC

Analog
input
(c)
Motorola MC6108 ADC

Successive approximation converter

The ADC0804

The ADCO804 is an inexpensive and very popular A/D converter which is available from a number of
different manufacturers, including National Semiconductor. The ADC0O804 is an 8-bit CMOS MiCroprocessor
compatible successive-approximation A/D converter that is supplied in a 20-pin DIP. It is capable of digitizing
an analog input voltage within the range 0 to +5 Vdc, and it only requires a single dc supply voltage—usually
+5 Vde. The digital outputs are both TTL- and CMOS-compatible.

The block diagram of an ADCO0804 is shown in Fig. 12.31. In this case, the controls are wired such that the
converter operates continuously. This is the so-called free-running mode. The 10-k{Q resistor, along with the
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150-pF capacitor, establishes the frequency of operation according to f'= 1/1.1(RC). In this case,
1
11 x (10 k€ % 150 pF)
_ 1
CLIx(10* x15x10772)

f=

=607 kHz

A momentary activation of the START switch is necessary to begin operation. A detailed discussion of the
ADCO804 is given in Section 15.4.

Section Counters

Another method for reducing the total conversion time of a simple counter converter is to divide the counter
into sections. Such a configuration is called a section counter. To determine how the total conversion time
might be reduced by this method. assume that we have a standard 8-bit counter. If this counter is divided into
two equal counters of 4 bits each, we have a section converter. The converter operates by setting the section
containing the four LSBs to all 1s and then advancing the other sections until the ladder voltage exceeds the
input voltage. At this point the four LSBs are all reset, and this section of the counter is then advanced until
the ladder voltage equals the input voltage.

Notice that a maximum of 2* = 16 counts is required for each section to count full scale. Thus this method
requires only 2 x 2* = 2° = 32 counts to reach full scale. This is a considerable reduction over the 2 = 256
counts required for the straight 8-bit counter. There is, of course, some extra time required to set the counters
initialty and to switch from counter to counter during the conversion. This logical operation time is very
small, however, compared with the total time saved by this method.
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This type of converter is quite often used for digital voltmeters, since it is very convenient to divide the
counters by counts of 10. Each counter is then used to represent one of the digits of the decimal number
appearing at the output of the voltmeter. We discuss this subject in detail in the next chapter.

14. What does SAR stand for in Fig. 12.30¢?
15. What is an ADC0804?

. 12.9 DUAL-SLOPE A/D CONVERSION '

Up to this point, our interest in different methods of A/D conversion has centered on reducing the actual
conversion time. If a very short conversion time is not a requirement, there are other methods of A/D
conversion that are simpler to implement and much more economical. Basically, these techniques involve
comparison of the unknown input voltage with a reference voltage that begins at zero and increases linearly
with time. The time required for the reference voltage to increase to the value of the unknown voltage is
directly proportional to the magnitude of the unknown voltage, and this time period is measured with a
digital counter. This is referred to as a single-ramp method, since the reference voltage is sloped like a
ramp. A variation on this method involves using an operational amplifier integrating circuit in a dual-ramp
configuration. The dual-ramp method is very popular, and widely used in digital voltmeters and digital panel
meters. It offers good accuracy, good linearity, and very good noise-rejection characteristics.

Single-Ram_p A/D Converter

Let’s take a look at the single-ramp A/D converter in Fig. 12.32. The heart of this converter is the ramp
generator. This is a circuit that produces an output voltage ramp as shown in Fig, 12.33a. The output voltage
begins at zero and increases linearly up to a maximum voltage ¥,,. It is important that this voltage be a
straight line—that is, it must have a constant slope. For instance, if ¥, = 1.0 Vdc, and it takes 1.0 ms for the
ramp to move from 0.0 up to 1.0 V, the slope is 1 V/ms, or 1000 V/s.

This ramp generator can be constructed in a number of different ways. One way might be to use a
D/A converter driven by a simple binary counter. This would generate the staircase waveform previously
discussed and shown in Fig. 12.16a. A second method is to use an operational amplifier (OA) connected as
an integrator as shown in Fig. 12.33b. For this circuit, if ¥, is a constant, the output voltage is given by the
relationship ¥, = (V;/RC)t. Since ¥}, R, and C are all constants, this is the equation of a straight line that has a
slope (V;/RC) as shown in Fig. 12.33a. Now that we have a way to generate a voltage ramp and we understand
its characteristics, let’s return to the converter in Fig. 12.32.

We assume that the clock is running continuously and that any input voltage ¥y that we wish to digitize
is positive. If it is not, there are circuits that we can use to adjust for negative input signals. The three decade
counters are connected in cascade, and their outputs can be strobed into three 4-flip-flop latch circuits. The
latches are then decoded by seven-segment decoders to drive the LED displays as units, tens, and hundreds
of counts. We can begin a conversion cycle by depressing the MANUAL RESET switch,

Refer carefully to the logic diagram and the waveforms in Fig. 12.32. MANUAL RESET generates a
RESET pulse that clears all the decade counters to Os and resets the ramp voltage to zero. Since Vy is positive
and RAMP begins at zero, the output of the comparator OA, V.., must be high. This voltage enables the
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Single-slope A/D converter

CLOCK gate allowing the clock, CLK, to be applied to the decade counter. The counter begins counting
upward, and the RAMP continues upward until the ramp voltage is equal to the unknown input ¥y.

At this point, time f,, the output of the comparator V. goes low, thus disabling the CLOCK gate and the
counters cease to advance. Simultaneously, this negative transition on ¥, generates a STROBE signal in the
CONTROL box that shifts the contents of the three decade counters into the three 4-flip-flop latch circuits.



